NASA-CR-1930648 \//450’2-—/302 96

Intelligent Systems Engineering

Final Report

Knowledge-Based Decision Support for Space
Station Assembly Sequence Planning

ISX Corporation
4353 Park Terrace Drive
Westlake Village, CA 91361

3

L

(NASGA~CE-173043) KNOWLE OGE-ASED NG3-26095
SECISION SUPPNRT FGR SPACE STATIGN

ASSENFPOLY Sz2UTNCe PLANNING Final

Royor® (15X Corpe) 142 D unclas

G3/12 0163063

Final Report

Knowledge-Based Decision Support for Space
Station Assembly Sequence Planning

Submitted By
ISX Corporation
4353 Park Terrace Drive
Westlake Village, CA 91361

April 12, 1991

Funded By

NASA Ames Research Center
NASA Research Announcement Contract NAS2-13296

1.0

2.0

3.0

4.0

Introduction..

Table of Contents

..

1.1 Purpose and SCOPEcoouetiiueiiniiiiiiiiiieii et ees
1.2 I et CAEIOM oo vt e ieereeeeesaeesenesnneassscssesssenasoseososesssssssonsssonssnnnns
1.3 (o133 T-3 1 1 TUT PP

References..

..

Project SUMMATY.ottt iiaaaer ettt teaenteaaces

Phase 2 Plans

..

Final Report: ' 1
Knowledge-Based Decision Support for Space Station Assembly Sequence Planning

1.0 Introduction

1.1 Purpose and Scope

This is the final report on work performed under NASA Ames Research Center (ARC)
Research Announcement Contract NAS2-13296.

1.2 Identification

This is the first released version of the final report on work performed under NASA ARC
Research Announcement Contract NAS2-13296. It is designated version 1.0 and is dated
April 12, 1991.

1.3 Contents

Section 2 lists references for products produced in this project. Section 3 presents a project
summary. An overview of plans to continue -development of an assembly sequence
planning system beyond the contracted work is presented in Section 4. Detailed
information of project objectives, work carried out, and results are presented in the
documents listed in Section 2.

20 References

Application Assessment Report: Space Station Assembly Sequence Planning. ISX
Corporation. March 6, 1990.

Requirements Specification: Knowledge-Based Decision-Support System for SSF
Engineering Managers. Version 1.0, ISX Corporation, May 11, 1990.

Preliminary Design Document: Knowledge-Based Decision-Support System for SSF
Engineering Managers. Version 1.0, ISX Corporation, June 15, 1990.

Assembly Sequence Planning Personal Analysis Assistant: User’s Reference Guide.
Version 1.0, ISX Corporation, February 14, 1991.

30 Project Summary

This work is funded by NASA ARC Research Announcement Contract NAS2-13296. The
objective is the phased development of a Personal Analysis Assistant for SSF assembly
sequence planning. Expertise was provided by Space Station Freedom Program Office
(SSFPO) staff and contractors.

A complete Personal Analysis Assistant (PAA) for SSF assembly sequence planning
consists of three software components: the System Infrastructure, Intra-Flight Value
Added, and Inter-Flight Value Added. The System Infrastructure is the substrate on which
software elements providing inter-flight and intra-flight value-added functionality are
built. It provides the capability for building representations of assembly sequence plans
and specification of constraints and analysis options. Intra-Flight Value-Added provides
functionality that will, given the manifest for each flight, define cargo elements, place
them in the NSTS cargo bay, compute performance measure values, and identify violated
constraints. Inter-Flight Value-Added provides functionality that will, given major

Copyright © 1991, ISX Corporation

Final Report: 2
Knowledge-Based Decision Support for Space Station Assembly Sequence Planning

milestone dates and capability requirements, determine the number and dates of required
flights and develop a manifest for each flight. The current project is Phase 1 of a projected
two phase program and delivers the System Infrastructure. Intra- and Inter-Flight Value-
Added were to be developed in Phase 2, which has not been funded.

Based on experience derived from hundreds of projects conducted over the past seven years,
ISX has developed an Intelligent Systems Engineering (ISE) methodology that combines
the methods of systems engineering and knowledge engineering to meet the special
systems development requirements posed by intelligent systems, systems that blend
artificial intelligence and other advanced technologies with more conventional
computing technologies. The ISE methodology defines a phased program process that
begins with an application assessment designed to provide a preliminary determination
of the relative technical risks and payoffs associated with a potential application, and then
moves through requirements analysis, system design, and development.

The Application Assessment. The assessment indicated the value and feasibility of a
"Personal Analysis Assistant" that would perform the work that is currently so tedious
and time-consuming for the human assembly sequence planner. The document
"Application Assessment Report: Space Station Assembly Sequence Planning,”" cited in
Section 2, presents assessment results in detail.

The Requirements Analysis. The requirements analysis for the Personal Analysis
Assistant followed the application assessment. The document "Requirements Analysis:
Knowledge-Based Decision-Support System for SSF Engineering Managers," cited in
Section 2, describes the results of the requirements analysis.

System Design. The system design extended and generalized the system specification
begun in the requirements specification. The document "Preliminary Design Document:
Knowledge-Based Decision-Support System for SSF Engineering Managers,"” cited in
Section 2, describes the the system design.

System Development. As noted above, this project is Phase 1 of a projected two phase
program. The system development deliverable of Phase 1 is the System Infrastructure
component of the complete Personal Analysis Assistant. The results of Phase 1 system
development are described in the document “"Assembly Sequence Planning Personal
Analysis Assistant: User's Reference Guide" which is cited in Section 2.

40 Phase 2Plans

Phase 2 of the projected two-phase program was to deliver Intra- and Inter-Flight Value-
Added functionality, a Cargo Bay Editor, and several user-interface enhancements. This
phase has not been funded and at the present time there are no plans for the development of
these components.

The documents "Requirements Analysis: Knowledge-Based Decision-Support System for
SSF Engineering Managers” and "Preliminary Design Document: Knowledge-Based
Decision-Support System for SSF Engineering Managers,” both of which are cited in
Section 2, present descriptions of the Intra- and Inter-Flight Value-Added functionality
that would have been provided in Phase 2. Intra- and Inter-Flight Value-Added
functionality is derived from an "Associate System" concept of man-machine interaction
that has evolved from several years of government-sponsored research and development
in a variety of application domains, including the Pilot's Associate, an advanced pilot aid

Copyright © 1991, ISX Corporation

Final Report: 3
Knowledge-Based Decision Support for Space Station Assembly Sequence Planning

developed for DARPA. The associate system operates like a colleague who helps the
manager perform his or her work. Like a good human associate, the system monitors the
status of the task in order to provide the level of support appropriate to the user's current
information needs. The Phase 2 Personal Analysis Assistant would have provided support
to the assembly sequence planner in determining the number and dates of required flights,
developing a manifest for each flight, defining cargo elements, placing cargo elements in
the NSTS cargo bay, computing performance measure values, and identifying violated
constraints.

Development of Intra- and Inter-Flight Value-Added components would have been
supported by MAX, the "Manager's Associate,” a framework for developing associate
systems developed under a NASA ARC Phase II SBIR contract.

The Cargo Bay Editor was to have been a graphic user-interface supporting placement of
cargo bay elements in the NSTS cargo bay by direct manipulation of icons and immediate
display of constraint values by means of Kohr's Curve and other graphic displays. Figure
1 shows a notional design for the interface of the Cargo Bay Editor.

Cargo Elements
e Keel Number:
STBD INBRD {ER Keel Location:
SOLAR ARRAYS Distance to forward bulkhead:
::;:::':gn RAILS Distance to aft bulkhead:
UTILITY TRAYS Distance to aft element:
B Distance to forward element:
MT/APS/AWP UL
UNPRESS. DOCK. RDAPTHNH
. b Keel... s C I
PRSSIVE DAMPERS(S) [0} (xeel.] (_sawe] (concer]

Figure 1: Notional Design for the Cargo Bay Editor User Interface

The Cargo Bay Editor would be operated as follows. The upper left corner of the editor
displays the envelopes containing the mission's cargo elements. Selecting a cargo
element causes a dialog to appear which invites the user to specify the element's geometric
attributes, including its envelope, keel pin and trunnion point locations, cg location, and
whether it is a full or half height element. After an element has been specified, it may be
dragged into the cargo bay for placement. To do that, the user selects the element and, with
the mouse, drags the cargo element to the cargo bay. When the element reaches the bottom
of the bay, it will "click” into place at the nearest keel pin/trunnion location which
matches the element's configuration. As the user slides the element along the bottom of the

Copyright © 1991, ISX Corporation

Final Report: 4
Knowledge-Based Decision Support for Space Station Assembly Sequence Planning

bay, the element continues to "click” into the next acceptable location. As the element
approaches another element, or the forward or aft cargo bay bulkhead, an alert is displayed
when the element violates the buffer distance constraint. The user then has the option of
overriding the violated constraint or returning the element to the last acceptable location.
The user may overlap elements to provide for the case where an element has a convex face
which complements a concave face of a adjacent element. The user may also reverse the
orientation of an element, such that the element's forward face becomes the aft face.
Directly below the cargo bay are a series of text fields which provide dynamic information
about the state of the currently selected element and the center of gravity margin as
determined by the Kohr's Curve. A description of each cargo element is shown in the lower
left corner of the editor while the "Save", "Cancel”, and "Keel..." buttons are located in the
lower right. Pressing the "Keel..." button displays a dialog which enables the user to alter
the configuration of the keel pin/trunnion locations.

Copyright © 1991, ISX Corporation

Final Report

Knowledge-Based Decision-Support System
for SSF Engineering Managers

Submitted By
ISX Corporation
501 Marin St., Suite 214
Thousand Oaks, CA 91360

June 15, 1990

Funded By

NASA Ames Research Center
Small Business Innovative Research Contract NAS2-13161

1.0

2.0

3.0

4.0

Table of Contents

Introduction

1.1 Purpose and Scope
1.2 Identification

1.3 Contents
References

Project Summary

Toward a Commercial Product

bt b

Final Report:
Knowledge-Based Decision-Support System for SSF Engineering Managers

1.0 Introduction

1.1 Purpose and Scope

This is the final report on work performed under NASA Ames Research Center (ARC) Phase
I SBIR (Small Business Innovative Research) Contract NAS2-13161.

1.2 Identification

This is the first released version of the final report on work performed under NASA ARC
Phase I SBIR Contract NAS2-13161. It is designated version 1.0 and is dated June 15, 1990.

1.3 Contents

Section 2 lists references for products produced in this SBIR. Section 3 presents a project
summary. A general discussion of plans to continue development to the fielding of a
commercial product are discussed in Section 4. Detailed information of project objectives,
work carried out, and results are presented in the documents listed in Section 2.

1

2.0 References

Application Assessment Report: Space Station Assembly Sequence Planning. 18X
Corporation. March 6, 1990.

Requirements Specification: Knowledge-Based Decision-Support System for SSF
Engineering Managers. Version 1.0, ISX Corporation, May 11, 1990.

Preliminary Design Document: Knowledge-Based Decision-Support System for SSF
Engineering Managers. Version 1.0, ISX Corporation, June 15, 1990.

©ISX Corporation

Final Report:
Knowledge-Based Decision-Support System for SSF Engineering Managers

3.0 Project Summary

This work is funded by ARC Phase I SBIR Contract NAS2-13161. The objective is the
development of requirements and a preliminary design for a knowledge-based decision-
support system for Space Station Freedom (SSF) engineering managers. The initial
application is SSF assembly sequence planning. Expertise was provided by Space Station
Freedom Program Office (SSFPO) staff and contractors.

Based on experience derived from hundreds of projects conducted over the past seven years,
ISX has developed an Intelligent Systems Engineering (ISE) methodology that combines the
methods of systems engineering and knowledge engineering to meet the special systems
development requirements posed by intelligent systems, systems that blend artificial
intelligence and other advanced technologies with more conventional computing
technologies. The ISE methodology defines a phased program process that begins with an
application assessment designed to provide a preliminary determination of the relative
technical risks and payoffs associated with a potential application, and then moves through
requirements analysis, system design, and development.

The Application Assessment. The assessment indicated the value and feasibility of a
"Personal Analysis Assistant” that would perform the work that is currently ‘'so tedious and
time-consuming for the human assembly sequence planner. The document "Application
Assessment Report: Space Station Assembly Sequence Planning,” cited in Section 2,
presents assessment results in detail.

The Requirements Analysis. The requirements analysis for the Personal Analysis
Assistant followed the application assessment. The document "Requirements Analysis:
Knowledge-Based Decision-Support System for SSF Engineering Managers," cited in
Section 2, describes the results of the requirements analysis. These results can be briefly
summarized as follows. The Personal Analysis Assistant (PAA) consists of three software
applications: the System Infrastructure, Intra-Flight Value Added, and Inter-Flight Value
Added. The System Infrastructure is the substrate on which software elements providing
inter-flight and intra-flight value-added functionality are built. It provides the capability
for building representations of assembly sequence plans, constraint networks describing
bounds on measures, and user-specifications of constraints and analysis options. Intra-
Flight Value-Added provides functionality that will, given the manifest for each flight,
define cargo elements, place them in the NSTS cargo bay, compute performance measure
values, and identify violated constraints. Inter-Flight Value-Added provides functionality
that will, given major milestone dates and capability requirements, determine the number
and dates of required flights and develop a manifest for each flight.

System Design. The preliminary system design extended and generalized the system
specification begun in the requirements specification. The generalization enables the
development of decision-support systems applicable to problems other than SSF assembly

sequence planning.

This work has produced requirements and a preliminary design for a framework
supporting the development of a family of "assistant” systems in several problem domains.
These assistant systems help the human planner by doing the bookkeeping to maintain plan
data and executing the procedures and heuristics currently used by the human planner to
define, assess, diagnose, and revise plans.

©ISX Corporation

Final Report: .
Knowledge-Based Decision-Support System for SSF Engineering Managers

40 Toward a Commercial Product

ISX plans to continue development of the the assistant system framework, our goal being the
fielding of a commercial Manager's Assistant product currently code named "MAX."

We intend to pursue product development through both Government and private channels.
Anticipated funding from SSFPO will support the development of the PAA, which will
address the assembly sequence planning problem and should produce reusable concepts,
designs, and possibly even code that can be applied to MAX. For the major portion of MAX
development, however, we intend to seek a NASA Phase II SBIR to continue the current work
and to seek funding from commercial sources that will leverage the NASA investment and
increase the likelihood of success. We have already begun discussions with potential
commercial investors, and we have found several potential sources of funding. To acquire
this funding, however, we will need a fairly robust and full-featured prototype system that
will help demonstrate the technical feasibility and market viability of MAX. We plan to use
a Phase II SBIR to produce this system.

A Phase II SBIR would fund a one-year development effort that would produce the first MAX
Infrastructure and Planner and apply it to a problem other than assembly sequence
planning. The system would contain models (Problem Recognition, Problem Solving, and
Resource Capability) for the application domain. Further development, to be supported by
commercial sources, would produce models for other application domains and would further
generalize the Infrastructure and Development Tools.

We believe that with NASA's continued support we can produce a successful commercial
MAX product that will have broad applicability to professional problem solving in a variety
of problem domains. .

©ISX Corporation

i
i

i

st A

S g
R

L
e e
S R

T

g e T e T

e e T ? T
R b -
R

Jﬁt—"i.‘ﬂylmu

mmrm»;’ﬂu:}mlrmmbvmmwu;

Application Assessment
Report

Space Station Assembly Sequence Planning

Submitted By

ISX Corporation
501 Marin St., Suite 214
Thousand Oaks, CA 91360

March 6, 1990

Prepared For

William Bastedo
NASA Space Station Program Office
10701 Park Ridge Blvd.
Code SSS
Reston, VA 22091-4398

Table of Contents

Executive Summary

1.0

2.0

3.0

4.0

5.0

6.0

Introduction

Analysis of the Assembly Sequence Planning Process
2.1 Overview of the Process

2.2 Problems with the Process

2.3 The Need and the Opportunity

Preliminary Design for a Personal Analysis Assistant

3.1 System Requirements
3.2 Functional Architecture
3.3 QOperational Scenarios

The Feasibility and Value of a Personal Analysis Assistant
41 Application Screening Profile
4.2 Assessment Results

Project Plan

5.1 Deliverables

5.2 Schedule and Milestones

5.3 Task Descriptions

54 The Development and Management Team

Estimated Cost

Appendix A: ISX Application Assessment Methodology

[u—

[
= O O o SO OO w

NI CRY

SSF Assembly Sequence Planning 1

Executive Summary

On February 26 and 27, 1990, ISX Corporation staff conducted an in-depth assessment of the
Space Station Freedom (SSF) assembly sequence planning process. The assessment team
included Bill Bewley, Gary Edwards, David Rosenberg, and Allen Smith of ISX. Peter
Warren and Brook Sullivan of Booz-Allen & Hamilton were the application experts, and
Bill Bastedo of the Space Station Freedom Program Office (SSFPO) provided application
information in the form of feedback to a presentation of preliminary assessment results on
the afternoon of February 27.

ISX application assessments are concentrated evaluations of potential applications for
intelligent systems technology. The assessments are intended to confirm the preliminary
determinations of the value and feasibility of an application and to develop an initial
system design and implementation plan.

SSF assembly sequence planning is an integral and vital component of the ongoing SSF
program. Its function, broadly stated, is to define launch vehicle flights and manifests
that satisfy a complex, interdependent set of SSF, launch vehicle, and programmatic
constraints. There are two phases of the process: the first is performed by SSFPO staff and
involving development of the flight manifest (the inter-flight plan), definition and
placement of cargo elements in the NSTS cargo bay (intra-flight plans), and
documentation and publication of plans; and the second is performed by SSF engineering
groups, which evaluate the documented plans, identify constraint violations, and provide
feedback to SSFPO. There are two iteration loops in the process: internal iteration, with
frequent iterations from plan validation by internal (SSFPO) analyses back to plan
revision; and external iteration, with less frequent iterations from plan validation by
external (SSF engineering) analyses to plan revision by SSFPO.

The assessment identified two major areas in which the assembly sequence planning
process is problematic: the assembly sequence planner's work load and the maintenance
of plan data. In both development of a new baseline plan and the performance of what-ifs,
the planner is charged with developing the manifest, defining cargo elements, placing
cargo elements in the NSTS cargo bay, calculating performance measures, validating the
measures, identifying violated constraints, and revising invalidated parts of the plan.
The analyses supporting these activities are time-consuming and must be performed
under severe time pressure. The what-ifs are especially difficult in that time pressure is
always great, they occur frequently, and the timing of their occurrence is difficult to
predict. Because of the time pressure, planners find it difficult to perform the depth and
breadth of analysis required to produce accurate and easily justifiable results.

Much of the assembly sequence planner's load is attributable to tedious and time-
consuming analyses that involve executing procedures, applying well-known heuristics,
and processing the horrendous detail of plan data, including assembly elements,
constraints, and all their interdependencies. This is the intellectual "scut” work of
analysis and planning, and the load it imposes often prevents the planner. from spending
time doing the creative problem solving required for assembly sequence planning. It also
makes it difficult for the planner to provide quick responses to questions and to perform the
depth and breadth of analysis needed to produce a new baseline plan or evaluate a what-if.

There is an opportunity to unload the planner by providing a personal "assistant” in a
machine that would perform the work that is currently so tedious and time-consuming.

SSF Assembly Sequence Planning 2

The assistant would be a personal analysis assistant that helps the human planner by
doing the bookkeeping to maintain plan data and executing the procedures and heuristics
currently used by the human planner to define flights, develop flight manifests, define and
place cargo elements, calculate performance measures, and identify violated constraints.
This unloading would speed the planning process, enable greater depth and breadth of
analysis, and free the human planner to spend more time doing what only the human
planner can do: evaluating analysis results; revising invalid assumptions, constraints’
and plans; generating new solutions to assembly sequence planning; and testing solution
hypotheses with what-ifs.

The assessment indicated the value and feasibility of a Personal Analysis Assistant
system to assist SSFPO and Booz-Allen & Hamilton staff in producing baseline assembly
sequence plans and what-if analyses. Three major elements of such a system were
identified: an Infrastructure for analysis support and validity checking; an Intra-Flight
Value-Added function that would generate and place cargo elements given a manifest;
and an Inter-Flight Value-Added function that would generate a manifest given major

milestones.

A project plan was developed that supports delivery of the Infrastructure by the end of June,
delivery of the Intra-Flight Value-Added function by the end of August, and delivery of the
Inter-Flight Value-Added function by the end of September. Support tasks continue through
the end of November.

Rough order of magnitude estimated burdened cost is presented in the table shown below.
These estimates do not include the cost of SSFPO and Booz-Allen & Hamilton labor and
travel. The estimate for the System Infrastructure deliverable is reduced by approximately
$25K because Infrastructure development is partially supported by the NASA-Ames Phase 1

SBIR.

Deliverable ISX Labor ISX Travel Total Cost
System
Infraétructune 148.8 13.8 162.6
Intra-Flight
Value Added 121.1 9.9 187.0
Inter-Flight 127.1 9.9 137.0
Value-Added
Suppart 86.7 2.6 89.3
Total 489.7 36.2 525.9

SSF Assembly Sequence Planning 3

1.0 Introduction

On February 26 and 27, 1990, ISX Corporation staff conducted an in-depth assessment of the
Space Station assembly sequence planning process. The assessment team included Bill
Bewley, Gary Edwards, David Rosenberg, and Allen Smith of ISX. Peter Warren and
Brook Sullivan of Booz-Allen & Hamilton were the application experts, and Bill Bastedo of
SSFPO provided application information in the form of feedback to a presentation of
preliminary assessment results on the afternoon of February 27.

The assessment was performed under a Phase 1 SBIR (Small Business Innovative
Research) contract (Contract NAS2-13161) awarded to ISX by NASA's Ames Research
Center to support the development of a knowledge-based decision-support system for Space
Station engineering managers. Following meetings in November, 1989 with Paul
Neumann and Ben Barker of the Space Station Freedom Program Office (SSFPO) and
conversations with Henry Lum of NASA-Ames and Gregg Swietek of NASA-HQ, it was
determined that Space Station Freedom (SSF) assembly sequence - planning is an
appropriate application for the Phase 1 SBIR and that the SSFPO is sufficiently interested to
consider funding a task extension. ISX submitted a proposal for this possible task
extension through NASA Research Announcement NRA2-34107(LMV). This submission,
dated January 5, 1990, can be funded through March 31, 1990. :

ISX application assessments are concentrated evaluations of potential applications for
intelligent systems technology. The assessments are intended to confirm the preliminary
determinations of the value and feasibility of an application and to develop an initial
system design and implementation plan. The goals for the SSF assembly sequence
planning application assessment were to:

e Analyze the assembly sequence planning process.

e Develop a preliminary system design and operational concept for an assembly
sequence planning decision-support system.

e Assess the feasibility and value of developing a knowledge-based system to support
the assembly sequence planning process.

e Develop a phased project plan for the design and implementation of an assembly
sequence planning decision-support system that will provide required
functionality.

The overall schedule for the February 26 - 27 assessment meetings, conducted at NASA
Space Station Program Office facility in Reston, VA, was as follows:

Monday, 2/26/90:
e introduction and discussion of assessment objectives
e an overview of the nature of assembly sequence planning

o presentation of planning constraints associated with the NSTS, the SSF
configuration, and external commitments

o presentation, analysis, and discussion of assembly sequence planning cases

SSF Assembly Sequence Planning 4

characterization of roles to be played by a knowledge-based assembly sequence
planning decision-support system

Tuesday, 2/27/90:

ISX presentation to Peter Warren and Brook Sullivan summarizing the
application overview, assessment, and a preliminary design for a Personal
Analysis Assistant for assembly sequence planning

ISX presentation to Bill Bastedo, revised following discussion with Peter and
Brook, summarizing the application overview, assessment, and a preliminary
design for a Personal Analysis Assistant

The main body of this report is presented in six sections:

Section 1 comprises this Introduction

Section 2 presents an analysis of the assembly sequence planning process as
described by Mr. Warren, Mr. Sullivan, and Mr. Bastedo. The analysis includes
an overview of the process, problems in the process, and the need for a knowledge-
based decision-support system.

Section 3 presents a preliminary design for a Personal Analysis Assistant, a
knowledge-based decision-support system for assembly sequence planning.

Section 4 analyzes the proposed system in terms of value and feasibility.

Section 5 presents a project plan for the development of the Personal Analysis
Assistant.

Section 6 summarizes estimated costs associated with Personal Analysis Assistant
development.

SSF Assembly Sequence Planning 5

2.0 Analysis of the Assembly Sequence Planning Process
2.1 Overview of the Process

Figure 1 presents a graphic overview of the SSF assembly sequence planning process.
There are two phases of the process: the first is performed by SSFPO staff and involving
development of the flight manifest (the inter-flight plan), definition and placement of
cargo elements in the NSTS cargo bay (intra-flight plans), and documentation and
publication of plans; and the second is performed by SSF engineering groups, which
evaluate the documented plans, identify constraint violations, and provide feedback to
SSFPO. There are two iteration loops in the process: internal iteration, with frequent
iterations from plan validation by internal (SSFPO) analyses back to plan revision; and
external iteration, with less frequent iterations from plan validation by external (SSF
engineering) analyses to plan revision by SSFPO.

The process begins with definition of constraints in three categories: NSTS constraints,
e.g., volume and mass capacity, flight rate; SSF hardware constraints, e.g., assembly
elements; and programmatic constraints, e.g., major milestones.

Given a space station configuration description (complete with definitions for all
assembly elements) and major milestone constraints, e.g., dates and capability
requirements for First Element Launch (FEL), Man-Tended Capability (MTC),
Permanent Manned Capability (PMC), and Assembly Complete (AC), the SSFPO assembly
sequence planner develops the flight manifest which consists of determining the number
and timing of flights and assigning assembly elements to flights. Following definition of
the manifest, intra-flight planning defines cargo elements as compositions of assembly
elements manifested to the flight and places cargo elements in the cargo bay.

The manifest and its associated intra-flight cargo-element groupings and cargo bay
placements are in essence a "hypothesis” which is tested by comparing performance
measures derived from the hypothesis with standards defined by programmatic/milestone
constraints, NSTS constraints, and SSF hardware constraints. Measures include mass,
volume, center of gravity (CG), the power requirement, the intra- and extra-vehicular
activity (EVA and IVA) requirements, and the Remote Manipulator System (RMS) reach
requirement. If measures and/or margins violate constraints, the invalidated part of the
plan is revised by changing/relaxing constraints or changing elements of the plan: the
manifest, cargo element definition, or cargo bay placement.

When the SSFPO is satisfied with the validity of plans (normally after informal
consultation with external groups), they are documented in a Space Station Stage Summary
Databook, which is distributed for review to SSF engineering groups, who perform
analyses and identify constraint violations. SSFPO collects feedback on constraint
violations and uses the feedback to drive plan revisions.

Although this description may suggest that assembly sequence planning begins anew with
each planning cycle, with constraints and plans being defined and developed from scratch
on each iteration, assembly sequence planning is in fact an ongoing process in which
constraints and plans are revisions of prior constraint definitions and plans.

There are two operational scenarios within the ongoing planning process: the first is
development of a new baseline assembly sequence plan for documentation in the Space
Station Stage Summary Databook; the second is performing what-if analyses that provide

SSF Assembly Sequence Planning 6

responses to questions on proposed perturbations of the current baseline, e.g., "What if the
NSTS mass capacity was increased by 12,000 lbs?".

Internal
Iteration

. Define

e SSFHardware \
¢ Programmatic.

i

Devélop Manifest
(Inter-Flight Plans)

 Develop Intra-Flight Plans
= Define Cargo Element
s Place Cargo Elements in Cargo Bay

.

Validate Plans (Internal Analyses) . ___
« Compute Measures,e.g., = = 0
- CG/Volume

- ‘Power
-~EVA .o
-RMS - SR D
* Compare Measures to Constrai

PmdmeSpaceStatlonStnge : ;
Summary Databook

d Assumptions,

and Plans

Cl Relax Constraints
Change Manifest

Cargo Element Definition
Cargo Bay Placement

h

Figure 1: The SSF Assembly Sequence Planning Process

2.2 Problems with the Process

The assessment identified two major areas in which the assembly sequence planning
process is problematic; these are the assembly sequence planner's work load, the
maintenance of plan data, and communication of assembly sequence plans.

SSF Assembly Sequence Planning 7

The Planner's Load. In both development of a new baseline plan and the performance of
what-ifs, the planner is charged with developing the manifest, defining cargo elements,
placing cargo elements in the NSTS cargo bay, calculating performance measures,
validating the measures, identifying violated constraints, and revising invalidated parts
of the plan. The analyses supporting these activities are time-consuming and must be
performed under severe time pressure. The what-ifs are especially difficult in that time
pressure is always great, they occur frequently, and the timing of their occurrence is
difficult to predict. Because of the time pressure, planners find it difficult to perform the
depth and breadth of analysis required to produce accurate and easily justifiable results.

Maintenance of Plan Data. It is a gross understatement to say that assembly sequence
planning is complex. There are 300 assembly elements and hundreds of constraints, all of
which interact. Insuring that all assembly elements are manifested, associating
assembly operational flow and data on mass, CG, volume, power, EVA, RMS, and heat
loads with each manifest, and keeping track of constraints that have been and have not
been met is a huge bookkeeping task that is both time-consuming and prone to error.

Communication of Assembly Sequence Plans. The communication of complex assembly
sequence plans to the broader space station community is a difficult problem in its own
right. A large number of Government, contractor, and subcontractor organizations need
ready access to the assembly sequence and its supporting data. Since many organizations
external to the SSFPO perform extensive and detailed evaluations of a assembly sequence,
some reliable and timely feedback mechanism would be most desirable.

2.3 The Need and the Opportunity

Much of the assembly sequence planner's load is attributable to tedious and time-
consuming analyses that involve executing procedures, applying well-known heuristics,
and processing the horrendous detail of plan data, including assembly elements,
constraints, and all their interdependencies. This is the intellectual “"scut” work of
analysis and planning, and the load it imposes often prevents the planner from spending
time doing the creative problem solving required for assembly sequence planning. It also
makes it difficult for the planner to provide quick responses to questions and to perform the
depth and breadth of analysis needed to produce a new baseline plan or evaluate a what-if.

Since computers are better and faster at this intellectual scut work than humans, there is
an opportunity to unload the planner by providing a personal "assistant” in a machine that
would perform the work that is currently so tedious and time-consuming. The assistant
would be a personal analysis assistant that helps the human planner by doing the
bookkeeping to maintain plan data and executing the procedures and heuristics currently
used by the human planner to define flights, develop flight manifests, define and place
cargo elements, calculate performance measures, and identify violated constraints. This
unloading would speed the planning process, enable greater depth and breadth of analysis,
and free the human planner to spend more time doing what only the human planner can
do: evaluating analysis results; revising invalid assumptions, constraints and plans;
generating new solutions to assembly sequence planning; and testing solution hypotheses
with what-ifs.

Functionality

SSF Assembly Sequence Planning

3.0 Preliminary Design for a Personal Analysis Assistant

The Personal Analysis Assistant is designed to provide the assistance needed to unload the
assembly sequence planner. It is an intelligent system that combines knowledge-based
and conventional algorithmic technologies to produce an integrated decision-support
system for the assembly sequence planner. As shown in Figure 2, the design is
evolutionary in that it is based on a framework or infrastructure that provides value to the
planner at the earliest stages of development and builds on that value by supporting the
addition of new functionality and the enhancement of existing functionality over the life

of the system.

-

Inter-Flight
Value-Added

Enhancements
Existing
Fupctionslity Inter-Flight
Value-Added

Intra-Flight
Value -Added

$

Intra-Flight | K77 Eou
Value -Addpd

Intra-Flight

Infrastructure

Figure 2: The Design is Evolutionary, Providing Early Value and Supporting the
Addition and Enhancement of Functionality.

Assembly sequence planning is a difficult problem for humans, and full automation is
beyond the capability of current technology (and probably not desirable, in any case). The
system is, therefore, designed to assist the human planner, not to automate the assembly
sequence planning process. The planner will specify the tasks the system is to perform,
e.g., validate specified flight plans, define cargo elements and place them in the cargo bay
of a flight, or define flights and flight manifests for specified major milestones. The
planner will also specify the assumptions the system is to use, e.g., flight plans, assembly
elements, manifests, and constraints. Given these specifications, the system will
generate results. The planner will then review the results, possibly request explanations
of results or follow-up analyses, and then make the final decisions, potentially modifying
the computer-generated plan. The system is essentially a laboratory for the assembly
sequence planner, providing an environment in which the planner can define and run

SSF Assembly Sequence Planning 9
conceptual experiments that help him do the problem solving needed to generate plans.
3.1 System Requirements

The assessment identified the following requirements that must be met by a Personal
Analysis Assistant for SSFPO assembly sequence planners:

e Provide an analysis support infrastructure for defining constraints, the manifest,
cargo elements, placement of cargo elements in the NSTS cargo bay, functions that
propagate constraint changes through the network of constraints, and an interface
for user input and the specification and generation of output reports.

e Provide functions for calculating intra-flight performance measures, e.g., mass,
CG, and volume and validating intra-flight plans by comparing measures to
constraints.

e Provide functions for defining cargo elements and planning placement of cargo
elements.

Provide functions for validating inter-flight plans by comparison to constraints.
e Provide functions for developing flight manifests from given programmatic
constraints.

o Support extensibility of the Personal Analysis Assistant by SSFPO and Booz-Allen
& Hamilton staff.

e Run on Macintosh II series platforms widely available at the SSFPO and Booz-
Allen & Hamilton facilities.

3.2 Functional Architecture

Figure 3 shows the functional architecture of the Personal Analysis System. The shaded
box, External Interfaces, and the dotted lines represent functionality that is supported by the
design but is outside the scope of the proposed work.

The functions shown in the figure are grouped into three major software elements: the
System Infrastructure, Intra-Flight Value-Added, and Inter-Flight Value-Added. These
software elements are described below.

The System Infrastructure will provide the following functions:

e the user interface, which includes an object editor for defining assembly sequence
plan elements (e.g., flights, assembly elements, cargo elements, and manifests)
as well as constraints

e the Net Builder, which will generate the network of constraints, plan elements, and
their relations '

e the Net Manager, which will update the network by propagating constraint changes

e Value Calculators, which will compute values of performance measures, e.g.,
mass, volume, center of gravity (CG), the power requirement, the extra-vehicular
activity (EVA) requirement, and Remote Manipulator System (RMS) reach

SSF Assembly Sequence Planning 10

Validator Planners Validator Planner

-

K Intra-Flight Value-Added Inter-Flight Value-Added

~ .~

- N

Value . Net Net

System Infrastructure

Figure 3: Functional Architecture of the Personal Analysis Assistant

e a Validator, which will compare values of performance measures to standards and
determine whether measures violate constraints

The System Infrastructure provides the capability for building representations of assembly
sequence plans, e.g., flights, manifests, cargo elements, and associated performance
measures; networks of dependencies among plan objects; constraint networks describing
bounds on measures; and user-specifications of constraints and analysis options. It also
supports calculation of performance measures and identification of violated constraints,
and intra-flight plans. This corresponds to "Validate Plans" in Figure 1. Finally, it is
the substrate on which functions providing inter-flight and intra-flight value-added
functionality are built. .

SSF Assembly Sequence Planning 11

Intra-Flight Value-Added will provide the following functions:

e an enhancement to the user interface in the form of editor for defining intra-flight
constraints, dependencies, and abstractions

e an intra-flight Validator, which will determine whether cargo element definitions
or cargo element placements violate constraints

e Planners, which will define cargo elements and placement of cargo element in the
NSTS cargo bay

Intra-Flight Value-Added will provide functionality that will, given the manifest for each
flight, define cargo elements, place them in the NSTS cargo bay, compute performance
measure values, and identify violated constraints. This corresponds to support of
"Develop Intra-Flight Plans" and "Validate Plans" in Figure 1.

Inter-Flight Value-Added, which will provide:

e an enhancement to the user interface in the form of editor for defining inter-flight
constraints, dependencies, and abstractions

e an inter-flight Validator, which will determine whether the manifest violates
constraints

e a Planner, which will define flights and manifest assembly elements to flights
given a space station configuration, program milestones, NSTS description, etc.

Inter-Flight Value-Added will provide functionality that will, given major milestone
dates and capability requirements, determine the number and dates of required flights
and develop a manifest for each flight.

33 Operational Scenarios
The proposed system will support the following operational scenarios:

e Given the manifest and definition and placement of cargo elements, the system
validates intra- and inter-flight plans by computing performance measures,
comparing measures to constraints, and flagging violated constraints. Enabling
Personal Analysis Assistant functions are: System Infrastructure and Intra-
Flight Value-Added.

e Given the manifest, the system defines and places cargo elements, and then
validates intra- and inter-flight plans by computing performance measures,
comparing measures to constraints, and flagging violated constraints. Enabling
Personal Analysis Assistant functions are: System Infrastructure and Intra-
Flight Value-Added. ‘

e Given major milestones, the system defines the number and dates of required
flights and develops a manifest for each flight, then defines and places cargo
elements, and finally validates intra- and inter-flight plans by computing
performance measures, cCOmparing measures to constraints, and flagging violated
constraints. Enabling Personal Analysis Assistant functions are: System

SSF Assembly Sequence Planning 2

Infrastructure, Intra-Flight Value-Added, and Inter-Flight Value-Added.

e Given a request for a what-if based on a constraint change, the system propagates
the change, identifies plan elements affected by the change, develops new plans for
the affected elements, and then validates changed plans by computing performance
measures, comparing measures to constraints, and flagging violated constraints.
Enabling Personal Analysis Assistant functions are: System Infrastructure,
Intra-Flight Value-Added, and Inter-Flight Value-Added.

o Given a request for a what-if based on a plan change by the user, the system
propagates the change, develops new plans for the affected elements, and then
validates changed plans by computing performance measures, comparing
measures to constraints, and flagging violated constraints. Enabling Personal
Analysis Assistant functions are: System Infrastructure, Intra-Flight Value-
Added, and Inter-Flight Value-Added.

40 The Feasibility and Value of a Personal Analysis Assistant

The assessment employed a formal methodology developed by ISX over several years and
hundreds of projects. Based on case-based interviews of experts and users, the
methodology rates the proposed application on scales measuring aspects of Al Risk (the
application risk associated with the artificial intelligence aspects of the proposed system),
Systems Engineering Risk (the risk associated with combining intelligent modules with
conventional modules to build a large and complex intelligent system), the value provided
by the application, and the estimated cost of the application.

The process begins with begins with a presentation by the expert summarizing the
following information:

e An application overview, including:
- Characterization of the application
- Tvypes of application situations
. The overall flow of steps or decisions in performing the application
- Expertise used in performing the application
- Opportunities for improving on the current practice

e An Example Case, including:
- Circumstances surrounding the case
- Step by step description of the actions that were taken in handling the case
- The expert's analysis of how the case was handled

From this presentation, the assessment team acquired information needed for completion
of the "Application Screening Profile," a tool developed by ISX staff for use in assessing
potential applications.

4.1 The Application Screening Profile
The Application Screening Profile, which is shown in Figure 4, characterizes a potential

application by scaling it on three dimensions: Al Risk, Systems Engineering Risk, and
Value & Cost. Appendix A provides complete definitions for this rating system.

13

SSF Assembly Sequence Planning

“au) "e0puimoUyd | 8961 @ tubuddod

Quewsandey
ABorouipe) peowendy “L

gy

[| ¥4 T] 0 perday ﬁ
$100] J¥ Mo
[| :«W\ i [H_ SUOUOdWO Y fRUOINEAU0D ! I ,VA ~ p hnqeanddy °9
I | 1 —\ﬂ; \/ ..A\u % soLodwo) Iy (I | P ! Aupquieas
Q 1500 'y [I T /VA 1 Aupqealioiorg
T | N | X | ssevpsimavenn
“ Kyjereueg) g v
\ — sﬂ*\}l s
X i 1 \K ! _ o5eg e0pmmovy
SSOUSAIDBYI 2 10 Auxodwo /eS¢
\
| 1 f !
_,ﬂ A W3 | _ X wersks o oy 'y
N 81818001 07 [p | w0
=) —T A D ot
f X |] knmiop
\ . ¥0%,8A0) WERWO(
[Y. } Lypqeureiuen ‘9 r ! > _
[[N] wewssby veck3
| I N |] KisayaQ
| | | T 1 sose)
r 1 _ wourigmeg
| I X I i Aqeneay
SWOWOINDOY WBMIOS G
anjey
S _ %1 bansg _ ~ ! X
s osvedr3 jo Ayjqeeay puv einiey 3
{ | I I ~ \ewdoimaq
KUBUISINDOY BIEMDITH 'y 018019 PAISUOY enbipi) woy) wesqy
[1 g fwowaanbey 1Y
_ Vﬁ. _ BURWIOPOd € _ _ ! _ \MA
ya) [FF—X | | g
7/ T A] Iypquivog woisds 2 :
o _ X _ T _ sy
[Y I] uomsBoiy| .
f _ T T \ wdny
% T T e N
, kpnoduon woisks 'y vogrnddy jo edh}
WBH A4 12J0pOy "0 Wy 1mipopy N .
s e n =23) O Tremens) (e==] ') ()
V0L UL \m\\\\\\\ - \)\,;\\ vopezivedio voumnady
é

371d0Hd DNINIIHOS NOILVOIlddV

The Application Screening Profile, With Personal Analysis Assistant Ratings

Figure 4

SSF Assembly Sequence Planning 4

4.2

Assessment Results

Ratings of the Personal Analysis Assistant are shown on Figure 4. The rationale for the
ratings is summarized below:

AI Risk -- low/moderate risk. This rating is based on the ready availability of
expertise, the anticipated moderate size of the knowledge base, the applicability of
current Al tools, and the assessment/planning nature of the application, for which
a variety of proven Al techniques are available.

Systems Engineering Risk -- moderate/high risk. Risk is elevated by strong
requirements for scaleability and integration of intelligent and conventional
components.- This risk is mitigated by the system design and the development
plan, which supports system extensibility by SSFPO and Booz-Allen & Hamilton
staff Hardware and software development/delivery requirements are not
difficult to achieve.

System Value -- high. The system is expected to enhance assembly sequence
planning by supporting more timely, less costly, and more effective planning and
what-if analyses. Assembly sequence planning is an extremely high-value task,
giving the resulting system good leverage.

System Cost -- low/moderate. Cost is relative, of course, but development of Al
components are expected to require approximately 1 person-year, which is low
compared to operational expert systems. Systems engineering cost is estimated to
be approximately 5 person-years. Estimated rough order of magnitude cost is

presented in Section 6.0.

SSF Assembly Sequence Planning 15

50 ProjectPlan

Based on several years of experience developing systems such as Pilot's Associate, AIM,
and ALSYM, ISX has developed an Intelligent Systems Engineering (ISE) methodology to
meet the unique methodological requirements imposed by systems that combine
knowledge-based components with conventional software components. The ISE
methodology, which blends the techniques of conventional systems engineering with those
of knowledge engineering and rapid prototyping, will be applied to the development of the
Personal Analysis Assistant.

Like conventional systems engineering methodologies, ISE proceeds through
requirements analysis, design, and implementation phases. Unlike conventional
methodologies, however, the ISE methodology employs rapid prototypes throughout the
development process, beginning with requirements analysis, to support user-centered
definition of requirements and system design and the acquisition and engineering of the
expert knowledge on which intelligent systems are based.

In systems with strong extensibility requirements, such as the Personal Analysis
Assistant, the methodology also involves user engineers as members of the development
staff to insure extensibility and maintainability of the system by the user organization.
This planned "technology transfer” is a primary feature of the ISE methodology.

The project plan described in this section is based on the ISE methodology and therefore
assumes significant involvement by experts and an engineer supplied by the user
organization. The estimated level of this involvement is listed for each task described in
Section 5.3 and is summarized in the description of the team presented in 5.4.

5.1 Deliverables

There are four major deliverables, the first three corresponding to the major system
elements described in Section 3 and the fourth being system documentation. Rapid
prototypes will be produced in support of each of the three software deliverables.

System Infrastructure

This will provide the functionality described in Section 3.2. 1t will include the user
interface, an object editor for defining assembly sequence plan elements, constraints,
dependencies, and abstractions, the Net Builder, and the Net Manager. It will provide the
capability for building representations of assembly sequence plans, e.g., flights,
manifests, cargo elements, and associated performance measures; networks of
dependencies among plan objects; constraint networks describing bounds on measures;
and user-specifications of constraints and analysis options. It also supports calculation of
performance measures and identification of violated constraints, and intra-flight plans,
and it is the substrate on which inter-flight and intra-flight value-added functionality
elements are built. The user interface will support all user input and will provide
functionality supporting user specification of on-screen and printed report formats.

Intra-Flight Value-Added
As described in Section 3.2, this will include an editor for defining intra-flight
constraints, dependencies, and abstractions, a Validator, and Planners that will define
cargo elements and placement of cargo element in the NSTS cargo bay. It will provide the
capability for the system to define cargo elements from a given manifest, place cargo
elements in the cargo bay, compute performance measures, and identify violated

SSF Assembly Sequence Planning 16

constraints.

Inter-Flight Value-Added
Also described in Section 3.2, this will include an editor for defining inter-flight

constraints, dependencies, and abstractions, a Validator, and a Planner, which will
define flight dates and manifest assembly elements to flights. It will provide the
capability to determine the number and dates of required flights and develop a manifest for
each flight, given major milestone dates and capability requirements.

Documentation
A User's Manual will be provided that contains information required to support use in

performing assembly sequence planning and extension of the system to support addition of
constraints and assembly sequence objects and their relations.

52 Schedule and Milestones

The assumed development period is 38 weeks, with the period of performance running
from March 12, 1990 to November 30, 1990. Our on-going SBIR enables the early start. The
schedule and milestones are shown in Figure 5, and tasks are described in Section 5.3.

i

TASKS Mar |Apr |May |Jun | Jul |Aug| Sep | Oct | Nov Dec

System Infrastructure
1. Requirements —_—
2. Design : —_
3. Implementation
4
5

. Testing
. Delivery A

Intra-Flight Value-Added
6. Requirements —
7. Design

8. Implementation

9. Testing
10. Delivery A

Inter-Flight Value-Added
11. Requirements

12. Design

13. Implementation

14. Testing

15. Delivery A

Suppart
16. System Documentation

17. User Support
18. Software Maintenance

Figure 5: Schedulé and Milestones

SSF Assembly Sequence Planning 17

53 Task Descriptions

Task 1: System Requirements Analysis
Purpose: Define Personal Analysis Assistant system requirements.

Conduct: Meetings involving ISX knowledge engineers and SSFPQO/Booz-Allen &

Hamilton experts/users. Review cases and develop operational scenarios. Generate object
lists, data dictionary. Describe system states, user information requirements, and system

responses.
Duration: 2 weeks.
Level of Expert Involvement: 2 days.

Level of Booz-Allen & Hamilton Technical Involvement: 2 days.

Task 2: System Design
Purpose: Produce the overall design for the Personal Analysis Assistant and a detailed

design for the System Infrastructure.

Conduct: Review preliminary design of system and collect information on all current
and anticipated constraints and assembly sequence planning objects that will support
design of the Net Builder, the Net Manager and the User Interface. ISX designer
characterizes operational scenarios developed in Task 5, identifying major tasks and
task groupings. Identifies major subfunctions, performs technology assessment, specifies
major system components and their interactions, assigns subsystem functionality, and
decomposes scenario events by subsystem.

Duration: 4 weeks.
Level of Expert Involvement: 1 day.
Level of Booz-Allen & Hamilton Technical Involvement: 4 days.

Task 3: Infrastructure Implementation
Purpose: Build an initial version of the Infrastructure.

Conduct: Implement the Infrastructure through a series of rapid prototypes, proceeding in a
depth-first fashion with SSFPO/Booz-Allen & Hamilton experts/users reviewing and

providing feedback on each prototype.

Duration: 6 weeks.

Level of Expert Involvement: 2 days.

Level of Booz-Allen & Hamilton Technical Involvement: 8 days.

Task 4: Infrastructure Testing
Purpose: Iterative improvement of the Infrgstructure's capabilities through case-based

testing and refinement of functionality.

SSF Assembly Sequence Planning 18

Conduct: Extensively exercise the system using expert-supplied cases, using test results to
improve the system. The expert plays a key role, providing the knowledge engineer's with
additional information about constraints, assembly sequence objects, and user interface

preferences.

Duration: 4 weeks.

Level of Expert Involvement: 2 days.

Level of Booz-Allen & Hamilton Technical Involvement: 5 days.

Task 5: Deliver the Infrastructure
Purpose: Milestone for delivery of the Infrastructure.

Conduct: Demonstration and code delivery to SSFPO/Booz-Allen & Hamilton
experts/users and NASA-Ames.

Duration: 1 day.
Level of Expert Involvement: 1 day. .
Leve] of Booz-Allen & Hamilton Technical Involvement: 1 day.

Task 6: Intra-Flight Value-Added Requirements Analysis
Purpose: Define Intra-Flight Value-Added requirements.

Conduct: Meetings involving ISX knowledge engineers and SSFPO/Booz-Allen &

Hamilton experts/users. Review cases and develop operational scenarios. Generate object
lists, data dictionary. Describe subsystem states, user information requirements, and

system responses.

Duration: 2 weeks.

Level of Expert Involvement: 2 days.

Level of Booz-Allen & Hamilton Technical Involvement: 2 days.

Task 7: Intra-Flight Value-Added Design
Purpose: Produce the Intra-Flight Value-Added design.

Conduct: ISX designer characterizes operational scenarios developed in Task 10,
identifying major tasks and task groupings. Identifies major subfunctions, performs

technology assessment, specifies major system components and their interactions,
assigns subsystem functionality, and decomposes scenario events by subsystem.

Duration: 4 weeks.
Level of Expert Involvement: 1 day.
Level of Booz-Allen & Hamilton Technical Involvement: 4 days.

SSF Assembly Sequence Planning 19
Task 8: Intra-Flight Value-Added Implementation
Purpose: Build an initial version of the Intra-Flight Value-Added system.

Conduct: Implement the Infrastructure through a series of rapid prototypes, proceeding in a
depth-first fashion with SSFPO/Booz-Allen & Hamilton experts/users reviewing and

providing feedback on each prototype.

Duration: 5 weeks.

Level of Expert Involvement: 1 day.

Level of Booz-Allen & Hamilton Technical Involvement: 8 days.

Task 9: Intra-Flight Value-Added Testing

Purpose: Iterative improvement of the Intra-Flight Value-Added system's capabilities
through case-based testing and refinement of functionality.

Conduct: Extensively exercise the system using expert-supplied cases, using test results to

improve the system. The expert plays a key role, providing the knowledge engineer's with
additional information about constraints, assembly sequence objects, and ‘user interface

preferences.

Duration: 4 weeks.

Level of Expert Involvement: 2 days.

Level of Booz-Allen & Hamilton Technical Invelvement: 5 days.

Task 10: Deliver Intra-Flight Value-Added
Purpose: Milestone for delivery of Intra-Flight Value-Added.

Conduct: Demonstration and code delivery to SSFPQO/Booz-Allen & Hamilton
experts/users and NASA-Ames.

Duration: 1day.
Level of Expert Involvement: 1 day.
Level of Booz-Allen & Hamilton Technical Involvement: 1 day.

Task 11: Inter-Flight Value-Added Requirements Analysis
Purpose: Define Inter-Flight Value-Added requirements.

Conduct: Meetings involving ISX knowledge engineers and SSFPO/Booz-Allen &
Hamilton experts/users. Review cases and develop operational scenarios. Generate object

lists, data dictionary. Describe subsystem states, user information requirements, and
system responses.

Duration: 2 weeks.
Level of Expert Involvement: 1 day.

SSF Assembly Sequence Planning 20

Level of Booz-Allen & Hamilton Technical Involvement: 2 days.

Task 12: Inter-Flight Value-Added Design
Purpose: Produce the design for the Inter-Flight Value-Added system.

Conduct: ISX designer characterizes operational scenarios developed in Task 16,
identifying major tasks and task groupings. Identifies major subfunctions, performs

technology assessment, specifies major system components and their interactions,
assigns subsystem functionality, and decomposes scenario events by subsystem.

Duration: 4 weeks.
Level of Expert Involvement: 1 day.

Level of Booz-Allen & Hamilton Technical Involvement: 4 days.

Task 13: Inter-Flight Value-Added Implementation
Purpose: Build an initial version of the Intra-Flight Value-Added system.

Conduct: Implement the Inter-Flight Value-Added system through a series of rapid
prototypes, proceeding in a depth-first fashion with SSFPO/Booz-Allen & Hamilton
experts/users reviewing and providing feedback on each prototype.

Duration: 5 weeks.

Level of Expert Involvement: 1 day.

Level of Booz-Allen & Hamilton Technical Involvement: 8 days.

Task 14: Inter-Flight Value-Added Testing

Purpose: Iterative improvement of the Inter-Flight Value-Added system's capabilities
through case-based testing and refinement of functionality.

Conduct: Extensively exercise the system using expert-supplied cases, using test results to
improve the system. The expert plays a key role, providing the knowledge engineer's with

additional information about constraints, assembly sequence objects, and user interface
preferences.

Duration: 4 weeks.
Level of Expert Involvement: 2 days.
Level of Booz-Allen & Hamilton Technical Involvement: 5 days.

Task 15: Deliver Inter-Flight Value-Added
Purpose: Milestone for delivery of Inter-Flight Value-Added.

Conduct: Demonstration and code delivery to SSFPO/Booz-Allen & Hamilton
experts/users and NASA-Ames.

Duration: 1 day.
Level of Expert Involvement: 1 day.

SSF Assembly Sequence Planning 21

Level of Booz-Allen & Hamilton Technical Involvement: 1 day.

Task 16: System Documentation

Purpose: Write the User's Manual.
Conduct: ISX and Booz-Allen & Hamilton engineers write documentation containing

information required to perform both assembly sequence planning and extension of the
system to support addition of constraints and assembly sequence objects and their

relations.

Duration: 4 weeks.

Level of Expert Involvement: 0 days.

Level of Booz-Allen & Hamilton Technical Involvement: 5 days.

Task 17: User Support
Purpose: Provide support to SSFPO and Booz-Allen & Hamilton users.

Conduct: ISX engineers provide telephone support and on-site support (1 on-site visit) to
SSFPO and Booz-Allen & Hamilton users. Support is in the nature of assistance in using
the system as delivered.

Duration: 8 weeks.

Task 18: Software Maintenance
Purpose: Provide software maintenance support.

Conduct: ISX engineers correct software problems discovered during post-delivery us of
the Personal Analysis Assistant.

Duration: 8 weeks.
54 The Development and Management Team

The project team for the development of the Personal Analysis Assistant requires a blend
of several types of experience and expertise. Development and management roles are
described below, along with estimated level of effort for each role.

Primary Expert
Experience has proven that for most effective conduct of the project there should be a single
operational specialist available for frequent extended interactions with the development
team. The expert will:

« provide application expertise and cases for design, development, and testing

purposes
e serve as the prime critiquer of the emerging Personal Analysis Assistant system

The estimated level of effort for expert involvement (both primary and secondary) is 1
person-month.

SSF Assembly Sequence Planning 22

Secondary Expert(s)
The person(s) in this role serve in a consulting capacity to the primary expert. The
primary expert is responsible for the duties listed above, but may use the secondary

expert(s) as a "sounding board,” resource, and so on.

Booz-Allen & Hamilton Engineer
Extensibility is a major requirement for the Personal Analysis Assistant. To insure that
the system will indeed be extensible by the user organization, a Booz-Allen & Hamilton
engineer must be part of the development team. This person will be responsible for
developing selected elements of the system. The estimated level of effort for this role is 3

person-months.

ISX Technical Lead
This person has technical responsibility for the design and development of the Personal
Analysis Assistant. This includes both performance of the majority of design tasks and
technical supervision of ISX implementors. Gary Edwards is proposed as the ISX
Technical Lead. The estimated level of effort for this role is 6 person-months.

ISX Design Consultant
The person in this role will provide technical advice to the ISX Technical Lead and the ISX
Project Lead. This assistance will include: design reviews; participation in technology
assessment; exploration, evaluation, and recommendation on interfaces to external
packages and databases; and exploration, evaluation, and recommendation on internal
database technology and interfaces. David Rosenberg is proposed as the ISX Design
Consultant. The estimated level of effort for this role is 3 person-months.

ISX Implementors
The persons in this role will implement and test elements of the Personal Analysis
Assistant. They will be assisted by the Booz-Allen & Hamilton engineer. The estimated
level of effort for this role is 14 person-months.

ISX Project Lead
The ISX Project Lead will have overall responsibility for delivery of the Personal Analysis
Assistant. He will monitor and direct all work at the program level, and he will be the
program-level contact to the SSFPO. He will also participate in requirements analysis
and design. Bill Bewley is proposed as the ISX Project Lead. The estimated level of effort

for this role is 6 person-months.

SSF Assembly Sequence Planning 23

6.0 Estimated Cost

Rough order of magnitude estimated burdened cost is presented in Table 1. These
estimates do not include the cost of SSFPO and Booz-Allen & Hamilton labor and travel.
The estimate for the System Infrastructure deliverable is reduced by approximately $25K
because Infrastructure development is partially supported by the NASA-Ames Phase 1

SBIR.

The cost of each deliverable is presented separately to enable selection of options, e.g., the '
Infrastructure, the Infrastructure and Intra-Flight Value-Added, and so on.

Table 1: Cost Estimates ($K)

Deliverable ISX Labor ISX Travel Total Cost
System
Infrastructure 148.8 13.8 162.6
Intra-Flight
Value-Ad%led 127.1 9.9 137.0
Inter-Flight 127.1 9.9 137.0
Value-Added
Support 86.7 2.6 893
Total 489.7 36.2 525.9

SSF Assembly Sequence Planning

Appendix A

ISX Application

Assessment Methodology

SSF Assembly Sequenbce Planning 25

This appendix outlines the ISX application assessment methodology, defining the terms
used in Figure 4.

AT Risk

AI Risk is the application risk associated with the artificial intelligence aspects of the
proposed system. Subscales measure amounts of qualities that past experience in
developing Al applications indicates increases the difficulty of development or reduces the
likelihood of success.

1. Type of Application.

This subscale is actually composed of two subscales: the activities present in the
application and the type of cognitive processing occurring within each activity.

There are four potential phases of activity within any application:

+ Interpret. Transformation of signals from the external environment to a symbolic
representation. Examples: Seismic Signals to Wave Form Phase Data; Optical
Signals to Intensity/Time Ratio.

e Assess. Receive intermediate classifications as input and produce a higher-level
classification (situation assessment) for use by Planning. Examples: Wave Form
Phase Data to Nuclear Explosion; Diagnostic Test Results to Implied Faults.

e Plan. Receive a situation assessment as input and produce a plan as output.
Examples: Implied Faults to Repair; Bogey to Tactics Plan.

e Act. Execute a plan. This phase occurs only in autonomous systems.
Within each activity phase, there are four possible types of cognitive processing that can

occur. More than one of the following processing types can occur in any phase. In general,
difficulty and implementation risk increases from Choose to Critique to Construct to

Create.

e Choose. Select from among a fixed, enumerable set of alternatives.

e (Critique. Analyze and evaluate a composite entity relative to a fixed standard,
using criteria for correctness and completeness.

« Construct. Assemble a composite entity from a fixed, enumerable set of constituent
element types, subject to a fixed set of rules.

e Create. Build a composite entity from a set of constituent element types, subject to
rather general principles or rules.

2. Nature and Availability of Expertise

This scale is composed of six subscales, each concerned with an aspect of expert
knowledge:

e Nature of Expertise

SSF Assembly Sequence Planning 26

This subscale contrasts verbal and performance-based expertise. Verbal expertise
is relatively easy to acquire using well understood knowledge acquisition
techniques employing interviews and the analysis of documents. Performance-
based expertise is more difficult to acquire, usually requiring the use of complex

simulations.

Low Risk: Easy to express verbally.

Low-Moderate Risk: Expressible verbally, but difficult.

Moderate-High Risk: Partially expressible verbally, requires some
performance.

High Risk: Performance-based expression, verbalization extremely

difficult and unreliable.

e Availabili

Availability of expertise depends on the presence or absence of operational
experience. Advanced Air Force systems may not have operational expertise
gained through experience solving a variety of real problems. In the absence of
operational expertise, analytic or theoretical expertise may be available, which
increases risk because the expertise is "untested.” If no expertise exists, either
operational or analytic, implementation risk is extremely high; absence of
expertise is usually a "showstopper” because it indicates that a solution for the
problem is unknown.

Low Risk: Significant operational expertise exists.
Low-Moderate Risk: Moderate operational expertise exists.
Moderate-High Risk: No operational expertise; only analytic.
High Risk: No operational or analytic expertise exists.

* Cases
Representative cases or operational scenarios are needed to design, develop, test,
and evaluate a system. If cases do not exist, they may be created or compiled with
varying cost in time and resources. If it is impossible to generate operational
cases, risk is extremely high; as with the absence of expertise, the absence of cases

suggests that a solution for the problem is unknown.

Low Risk: Cases already exist and provide good coverage of all
situations. .

Low-Moderate Risk: None exist; readily created/compiled.

Moderate Risk: None exist; significant resources needed to
create/compile.

SSF Assembly Sequence Planning 27

Moderate-High Risk: None exist; hypothetical cases could be created.

High Risk: None exist; cases cannot be created.

» [Expert Agreement

The development of an intelligent module is facilitated when different experts
approach problems in the same way and when the results produced by different
experts are similar. In addition, the acceptability of an application is usually low
when experts do not agree. These risks increase as agreement among experts

decreases.

Low Risk: High agreement.
Moderate Risk: Moderate agreement.
High Risk: Little or no agreement.

e Domain Coverage

Intelligent systems are easier to design and develop when there is a single expert
who can cover the entire application domain. If domain expertise is distributed
across several experts, knowledge acquisition risk increases. This risk can be
reduced somewhat if a single expert is able to represent/arbitrate multiple experts.

Low Risk: All experts cover entire domain.

Moderate Risk: Experts specialize in areas of domain, but some experts
know sources in all areas and can represent/arbitrate

these sources.

High Risk: Experts specialize; none can represent the entire
domain.

« Volatility of Knowled
When knowledge in a domain is unstable, the likelihood of capturing
inappropriate, out-of-date knowledge increases, as does the difficulty of
maintaining the knowledge base. These factors increase the risk of producing an
unacceptable system, both in terms of functionality and cost.

Low Risk: Expertise is stable; knowledge acquired in prior years
will be essentially the same as today's knowledge.

Moderate Risk: Expertise is moderately volatile.

High Risk: Expertise is evolving quickly.

3. Complexity/Difficulty of Task

For expert system applications, problems that are cognitively difficult for a human
expert tend to be difficult for a intelligent system. This scale measures the difficulty of

SSF Assembly Sequence Planning 28

the application task for a human expert.

Low Risk: Straightforward for any practitioner.

Low-Moderate Risk: Straightforward for an expert.

Moderate-High Risk: Moderately difficult for an expert.

High Risk: Very difficult for expert; an expert is often unsuccessful.

4. Role of System

Risk increases as the role of the intelligent system approaches that of an autonomous
decision maker because the knowledge used by such systems must be complete and
verified, qualities that increase the difficulty and risk of system design and
development. Systems that advise competent human decision makers can serve a
useful function with less complete and verified knowledge.

Low Risk: Consultation/Advisory system; aid to competent human
decision maker. .

Moderate Risk: System is the decision maker, with a lower-skilled
human in the loop.

High Risk: Closed-loop autonomous system.
5. Size and Complexity of Knowledge Base

This scale is composed of four subscales, each concerned with an aspect of size and
complexity of the knowledge base:

* Size

Large knowledge bases increase risks associated with hardware, verification and
validation, maintenance, and performance. The larger the knowledge base, the
greater the risk. The metric for knowledge base size is number of knowledge base
elements (rules, objects, facts, attributes, and key relationships).

Low Risk: Very Small (< 50 elements).
Low-Moderate Risk Small (~ 200 elements).
Moderate Risk: Medium (~ 400 to ~ 700 elements).

Moderate-High Risk: Large (~ 1000 elements).
High Risk: Very Large (10,000 + elements).
o Interrelatedness of Knowledge Base Elements

“Interrelatedness” is a measure of the complexity of the knowledge base. The
greater the interrelatedness of knowledge base elements, the greater the "ripple”

SSF Assembly Sequence Planning 29

effect of changes in elements, and the greater the difficulty of knowledge
engineering and knowledge base maintenance.

Low Risk: Most elements independent; changes in one element do
not cause changes in others.

Moderate Risk: Some coupling and interdependence among elements.

High Risk: ' Changes in one element cause ripples of change through
other elements.

+ Knowledge Base P bl

Another aspect of the size and complexity of the knowledge base is its
prototypability. Knowledge-based systems should be developed incrementally,
beginning with a relatively small and simple knowledge base and increasing its
depth and breadth with each prototype iteration. A prototype, though small and
simple, should be meaningful, however, in the sense of providing useful
information and a convincing demonstration of concepts. This scale measures the
ability to define a meaningful prototype that is less than the full system in
knowledge base size and complexity.

Low Risk: Meaningful prototype can be defined that is less than the
full system in depth and breadth.

Low-Moderate Risk: Need full depth for a prototype (complete functionality).
Moderate-High Risk: Need full breadth for a prototype (complete scope).

High Risk: No meaningful prototype can be defined that is less than
full scope and functionality.

. Knowledge Base Scalabili

"Scalability” refers to the ability to extend the prototype intelligent module to the
full module. Scaling to the full scope and functionality is relatively easy when no
redesign is required and knowledge base expansion is moderate. Risk increases
as the magnitude of knowledge base augmentation increases and if a redesign is

required.

Low Risk: No redesign is required and only moderate knowledge
base augmentation is needed to increase scope and
functionality.

Moderate Risk: No redesign is required, but substantial knowledge base
augmentation is needed to increase scope and
functionality.

High Risk: Redesign is required to increase scope and
functionality.

6. Applicability of Current Al Tools

SSF Assembly Sequence Planning 30

Al tools greatly speed the development of intelligent applications by providing
“canned” reasoning frameworks, knowledge base facilities, and explanation
capabilities. Supported commercial tools, if appropriate for the application, reduce risk
substantially. Risk increases when non-supported "research” tools are used and when
extensions to tools are required. Risk is, of course, high when no appropriate tools are

available.

Low Risk: Current commercial tools are appropriate, without
extensions.

Low-Moderate Risk: Current research tools are appropriate, without
extensions.

Moderate-High Risk: Require extensions to current tools.

High Risk: No current tools are appropriate, even with extensions.

7. Advanced Technology Requirements

Applications may depend on advanced, research technology. Risk increases as
dependence on advanced technology increases.

Low Risk: None; the application can be developed using well
understood technology.

Moderate Risk: Optional; the application does not require advanced
technology, but it provides opportunities for the use of
advanced technologies and applied R&D.

High Risk: Required; the application cannot be built without
advanced technology.

Systems Engineering Risk

Many complex applications require more than a single intelligent module. These
applications require the integration of intelligent modules into a system composed of
conventional software components such as databases, analysis routines based on
operations research techniques, statistical packages, and the like. Systems Engineering
Risk is the application risk associated with combining intelligent modules with
conventional modules to build a large and complex intelligent system. Subscales measure
intelligent system qualities that experience has shown to be indicative of systems
engineering risk.

1. Al/Conventional Module Mix

This subscale measures the risk produced by the mix of intelligent and conventional
modules. Risk increases with the number of intelligent modules and with the

introduction of conventional modules to the intelligent system.

Low Risk: Single intelligent module.

SSF Assembly Sequence Planning 31

Low-Moderate Risk: Single intelligent module plus conventional modules.

Moderate-High Risk: Multiple intelligent modules.

High Risk: Multiple intelligent modules plus conventional
modules.

2. Degree of Integration

"Integration” is measured by the frequency and amount of interaction among system
components. The greater the interaction, the greater the system complexity, and the
greater the risk.

Low Risk: Low interaction among modules.
Moderate Risk: Moderate interaction among modules.
High Risk: High interaction among modules.

3. System Scalability

One of the scales measuring Al Risk dealt with the ease of extending a prototype Al
module to a full module. The present scale is concerned with the ability to extend the
prototype intelligent system composed of several modules to the full system. Scaling to
the full system is relatively easy when no redesign is required and augmentation of
the system is moderate. Risk increases as the magnitude of the augmentation
increases and if a redesign of the system is required.

Low Risk: No redesign is required and only moderate
augmentation is needed to increase scope and
functionality.

Moderate Risk: No redesign is required, but substantial augmentation is
needed to increase scope and functionality.

High Risk: Redesign is required to increase scope and
functionality.

4. Response Performance Requirements

Some applications have no specified response performance requirements or require
response times measured in minutes. Others demand response times in milliseconds.
Current capabilities can provide response times in seconds and certainly in minutes.
Millisecond performance may require special hardware and compilation techniques.

Low Risk: No response time requirement.
Low-Moderate Risk: Response performance in minutes.
Moderate-High Risk: Response performance in seconds.

High Risk: Response performance in milliseconds.

SSF Assembly Sequence Planning 2

5. Hardware Requirements: Development and Delivery

The ideal hardware requirement is, of course, no requirement. If no hardware is
specified, hardware producing the lowest risk can be chosen. When hardware is
specified, it is usually the case that Al hardware offers the most efficient development
environment and lowest risk delivery environment for Al modules, with risk
increasing when off-the-shelf non-Al hardware is specified. For the conventional
elements of intelligent systems, this relationship is reversed: risk is usually lower
with non-AI hardware. The highest risk condition for Al modules and conventional
modules is the specification of special hardware; in this case, software development
risk is compounded by the need to run on new hardware. Requirements for
development hardware and delivery hardware are rated separately using the scale
points below.

Low Risk: None specified.

Low-Moderate Risk: Specified Al hardware for AI modules / non-Al
hardware for conventional modules.

Moderate Risk: Non-specified non-Al hardware for Al modules / non
specified Al hardware for conventional modules.

Moderate-High Risk: Specified non-Al hardware for Al modules / specified Al
hardware for conventional modules.

High Risk: Special hardware.
6. Software Requirements: Development and Delivery

As with hardware, the ideal software requirement is no requirement. When software
is specified, Al languages or tools, e.g., LISP, PROLOG, KEE, usually reduce the risk
for AI modules. Non-Al languages are generally believed to reduce the risk for
conventional modules, although this is arguable. The highest risk condition for Al
modules and conventional modules is generally thought to be the specification of a
language or development environment for which there is relatively little practical
experience in the development of intelligent systems, e.g., ADA. Requirements for
development software and delivery software are rated separately using the scale points

below.

Low Risk: None specified.

Low-Moderate Risk: Specified Al software for Al modules / non-Al software
for conventional modules.

Moderate-High Risk: Specified non-Al software for Al modules / specified Al
software for conventional modules.

High Risk: Specified "new" software development environment,

e.g., ADA

7. Maintainability

SSF Assembly Sequence Planning 33

System maintenance is a risk category not usually considered in evaluating systems.
It is important because of its potentially significant impact on the usability and life-
cycle cost of systems. Maintainability is measured in terms of the stability of the data,
models, and components of the intelligent system. The greater the frequency and
magnitude of changes, the lower the usability of the system, the greater the cost of
maintaining the system, and the greater the risk of failure.

Low Risk: None; once built, the system will require little
maintenance.
Moderate Risk: Moderate; system maintenance will approach but not

exceed system development effort.

High Risk: HIgh; system maintenance will exceed system
development effort.

Value & Cost

The value provided by an application and the cost of the application are obviously key
factors in application screening. Value and cost are collapsed into a single dimension,
with value less than or equal to life cycle cost at the left or low end of the dimension and
value "far exceeding" life cycle cost at the right or high end. "Far exceeding" is not
defined; the analysis of value and cost for an application screening is intended to be crude,
providing only a very rough order of magnitude estimate of the anticipated "bottom line."
The analysis is conducted through the use of four subscales, three examining indexes of
value and one attempting to represent the cost of developing a prototype system and a full
system.

1.

3.

Economic Value

This subscale measures the estimated value of the application in terms of economic
factors such as cost savings and increased revenue.

Low Value: Payoff less than or equal to life cycle costs of the system.
Moderate Value: Payoff "exceeding” life cycle costs.

High Value: Payoff "far exceeding” life cycle costs.

Effectiveness

This subscale measures the value of the application in less tangible terms than cost
savings. "Effectiveness” is concerned with the "quality” factors such as mission
effectiveness, survivability, and reliability.

Low Value: Low effectiveness.
Moderate Value: Moderate effectiveness.
High Value: High effectiveness.

Generality

SSF Assembly Sequence Planning M4

The value of an application can go beyond its specific domain. The concepts and
techniques created in designing and developing the application could be used to
leverage the design and development of different applications. The basic structure,
implementation framework, or knowledge used in the application could be applied to
similar problems in the organization sponsoring the application or in other parts of
NASA. The greater the generality of an application, the greater its value.

Low Value: Low generality; one-time use for the system.

Moderate Value: Moderate generality; some concepts or techniques could
be generalized for use in some applications.

High Value: High generality; details of the system could be applied to
many applications.

3. Cost

The cost of an intelligent system is measured in estimated person-years of effort
required to produce conventional components, Al components, and any applied R&D
required by the system. Cost estimates for a prototype system and for a full system are
rated separately for each of the three work elements (conventional components, Al
components, and applied R&D) using the scale points below.

Low Cost: 0 person-years.
Low-Moderate Cost: 1 person-year.
Moderate Cost: | 5 person-years.
Moderate-High Cost: 10 person-years.

High Cost: 20 person-years.

R
s

T

A
LA L R

A

e

g
R

i

S i

i = i
sl : e e
ﬁ»sﬁm iR R
,!‘“;“,E‘ i) i

i
e
i

it

i

K ——
b

il e e Bt e

Requirements Specification

Knowledge-Based Decision-Support System
for SSF Engineering Managers

Submitted By
ISX Corporation
501 Marin St., Suite 214
Thousand Oaks, CA 91360

May 11, 1990

Funded By

NASA Ames Research Center
Small Business Innovative Research Contract NAS2-13161

1.0

20

3.0

4.0

5.0

6.0

Table of Contents

Introduction

1.1 Purpose and Scope
1.2 Identification

13 Acronyms

14 Notation

1.5 Background

References

System Overview
3.1 Overview of the Application
32 System Vision

Top-Level Objects

Operational Scenarios
5.1 Baseline Development Scenarios
5.2 What-If Scenarios

Object Details

6.1 The PAA

6.2 The External Environment
6.3 External Interfaces

=3 CO DD = b

3t n

10

ERE

16

885

Requirements Specification:
Knowledge-Based Decision-Support System for SSF Engineering Managers

1.0 Introduction
1.1 Purpose and Scope

This document describes requirements for a knowledge-based decision-support system for
Space Station Freedom (SSF) engineering managers. The target application is SSF
assembly sequence planning. Development of these requirements is funded by NASA Ames
Research Center (ARC) Phase I SBIR (Small Business Innovative Research) Contract

NAS2-13161.
1.2 Identification

This is the first released version of the requirements specification for a knowledge-based
decision-support system for SSF engineering managers. It is designated version 1.0 and is

dated May 11, 1990.

This work was performed using ISX's Intelligent Systems Engineering (ISE) methodology.
A key feature of the ISE methodology is the early and continuous use of prototypes to inform
the development of requirements and the system design. The requirements described in this
document, and the preliminary design described in the design document cited in Section 2,
were developed with the support of prototypes used to express and test assumptions and
approaches. As additional prototypes are developed, requirements and the design will also
continue to develop, increasing in both depth and breadth. These enhancements and
extensions will be documented in subsequent drafts of this requirements specification and
the design document, which will be issued periodically as the products of work performed
under a subsequent contract.

1.3 Acronyms
AC Assembly Complete
ARC NASA's Ames Research Center

ASRM Advanced Solid Rocket Motor

CcG Center of Gravity

FEL First Element Launch

ISE Intelligent Systems Engineering

IVA Intravehicular Activity

EVA Extraveﬁicular activity

MAX Manager's Assistant

MTC Man-Tended Capability

NSTS National Space Transportation Sysf.em (the Shuttle)
PAA Personal Analysis Assistant

©ISX Corporation

Requirements Specification:
Knowledge-Based Decision-Support System for SSF Engineering Managers

PMC Permanent Manned Capability
RMS Remote Manipulator System

SBIR Small Business Innovative Research
SSF Space Station Freedom

SSFPO Space Station Freedom Program Office

1.4 Notation

Object A

Object B Object C Assembly Structure: Object B is part of Object A

t

Object A

Object B Object C Hierarchical Classification Structure: Object B is an Object A

Object A

Object B Instance Connection: 1 Object A is connected to many Object Bs

©ISX Corporation

Requirements Specification:
Knowledge-Based Decision-Support System for SSF Engineering Managers

1.5 Background

This work is funded by ARC Phase I SBIR Contract NAS2-13161. The objective is the
development of specifications for a knowledge-based decision-support system for Space
Station Freedom (SSF) engineering managers.

Following meetings with Paul Neumann and Ben Barker of the Space Station Freedom
Program Office (SSFPO) and conversations with Henry Lum of ARC and Gregg Swietek of
SSFPO, it was determined that SSF assembly sequence planning is an appropriate
application for the Phase I SBIR, and that the SSFPO is sufficiently interested to provide staff
to support application assessment, requirements analysis, and design activities. The
customer and expert for the proposed application is Bill Bastedo of the SSFPO. Mr. Bastedo
offered two days of his and his staff's time to support an application assessment, followed by
occasional review of requirements and design documentation.

Based on experience derived from hundreds of projects conducted over the past seven years,
ISX has developed an Intelligent Systems Engineering (ISE) methodology that combines the
methods of systems engineering and knowledge engineering to meet the special systems
development requirements posed by intelligent systems, systems that blend artificial
intelligence and other advanced technologies with more conventional computing
technologies. The ISE methodology defines a phased program process that begins with
application screenings designed to provide a preliminary determination of the relative
technical risks and payoffs associated with a potential application, and then moves through
application assessments to requirements definition, design, and development.

Using information provided by Paul Neumann and Ben Barker, ISX completed the
application screening in December, 1989. The next step, performed on February 26 and 27,
1990, was the application assessment. The assessment team included Bill Bewley, Gary
Edwards, David Rosenberg, and Allen Smith of ISX. Peter Warren and Brook Sullivan of
Booz-Allen & Hamilton were the application experts, and Bill Bastedo of the SSFPO provided
application information in the form of feedback to a presentation of preliminary assessment
results on the afternoon of February 27.

The document "Application Assessment Report: Space Station Assembly Sequence
Planning,” cited in Section 2, presents assessment results in detail. These results can be
briefly summarized as follows:

e Analysis of the Process. SSF assembly sequence planning is an integral and vital
component of the ongoing SSF program. Its function, broadly stated, is to define launch
vehicle flights and manifests that satisfy a complex, interdependent set of SSF, launch
vehicle, and programmatic constraints. In both development of a new baseline plan
and the performance of what-ifs, the planner is charged with developing the manifest,
defining cargo elements, placing cargo elements in the NSTS cargo bay, calculating
performance measures, validating the measures, identifying violated constraints,
and revising invalidated parts of the plan. The analyses supporting these activities
are time-consuming and must be performed under severe time pressure. The what-ifs
are especially difficult in that time pressure is always great, they occur frequently, and
the timing of their occurrence is difficult to predict. Because of the time pressure,
planners find it difficult to perform the depth and breadth of analysis required to
produce accurate and easily justifiable results.

« Preliminary System Concept. The load on the assembly sequence planner can be
reduced by providing a personal “assistant" in a machine that would perform the work

©ISX Corporation

Requirements Specification:
Knowledge-Based Decision-Support System for SSF Engineering Managers

that is currently so tedious and time-consuming for the human planner. The assistant
would be a "Personal Analysis Assistant” that helps the human planner by doing the
bookkeeping to maintain plan data and executing the procedures and heuristics
currently used by the human planner to define flights, develop flight manifests, define
and place cargo elements, calculate performance measures, and identify violated
constraints. The Personal Analysis Assistant (PAA) system would consist of three
major elements: (1) an Infrastructure for analysis support and validity checking; (2)
an Intra-Flight Value-Added function that would generate and place cargo elements
given a manifest; and (3) an Inter-Flight Value-Added function that would generate a
manifest given major milestones.

« Assessment of Value and Feasibility. The assessment indicated that a Personal
Analysis Assistant system for assembly sequence planners was both feasible and
valuable. The system concept was rated on four dimensions: Al Risk, Systems
Engineering Risk, Value, and Cost. Al Risk was judged low to moderate because of
the ready availability of expertise, the anticipated moderate size of the knowledge base,
the applicability of current Al tools, and the assessment/planning nature of the
application, for which a variety of proven Al techniques are available. Systems
Engineering Risk was judged moderate to high because of strong requirements for
scaleability and integration of intelligent and conventional components, a risk which
is partially mitigated by a system concept that supports extensibility by SSFPO and
Booz-Allen & Hamilton staff. System Value was rated high because the system is
expected to greatly enhance assembly sequence planning, an extremely high-value
task, by supporting more timely, less costly, and more effective planning and what-if
analyses. System Cost was estimated to be low to moderate, with development of Al
components expected to require approximately 1 person-year and systems engineering
cost estimated to be approximately 5 person-years

The requirements analysis for the Personal Analysis Assistant followed the application
assessment. The ISE requirements analysis process begins with an overview of the
application and a definition of the "system vision,” which is a top-level view of the proposed
intelligent system and its role in the application. This is followed by identification of objects
involved in the application, development of operational scenarios, and identification of
detailed object descriptions, including structural relationships, attributes, and processing.
The system overview is described in Section 3. Section 4 describes top-level objects identified

for the application. Section 5 summarizes the operational scenarios. Detailed object
descriptions are presented in Section 6.

20 References

Application Assessment Report: Space Station Assembly Sequence Planning, 18X
Corporation. March 6, 1990.

Kaidy, James T., and Bastedo, William G. Space Station Assembly Sequence Planning: An
engineering and operational challenge. Proceedings of the ATAA, 1988. '

Space Station Stage Summary Databook. Space Station Freedom Program Office,
December 15, 1989.

Warren, P. Baseline Assembly Sequence Rationale, February 28, 1990.

Warren, P. and Sullivan, B. ASRM Trade Study, 1990.

©ISX Corporation

Requirements Specification: 5
Knowledge-Based Decision-Support System for SSF Engineering Managers

3.0 System Overview

This section presents an overview of the assembly sequence planning application and a
definition of the preliminary system vision.

3.1 Overview of the Application

Figure 1 presents a graphic overview of the SSF assembly sequence planning process. The
process has two phases. The first phase is performed by SSFPO and Booz-Allen & Hamilton
staff and involves development of the flight manifest (the inter-flight plan), definition and
placement of cargo elements in the NSTS cargo bay (intra-flight plans), and documentation
and publication of plans. This phase iterates in frequent "Internal Iteration” loops from
plan validation by internal (SSFPO) analyses back to plan revision. The second phase is
performed by Space Station Freedom (SSF) engineering groups, which evaluate the
documented plans, identify constraint violations, and provide feedback to SSFPO. This
phase is characterized by less frequent "External Iterations" from plan validation by
external (SSF engineering) analyses to plan revision by SSFPO.

‘

The process begins with definition of constraints in three categories:

e National Space Transportation System (NSTS) constraints, e.g., volume and mass
capacity, flight rate.

e SSF hardware constraints, e.g., configuration and assembly elements.
¢ Programmatic constraints, e.g., major program milestones and priorities.

Given a space station configuration description (complete with definitions for all assembly
elements) and major milestone constraints, e.g., dates and capability requirements for
First Element Launch (FEL), Man-Tended Capability (MTC), Permanent Manned
Capability (PMC), and Assembly Complete (AC), the SSFPO assembly sequence planner
develops the flight manifest, which consists of determining the number and timing of flights
and assigning assembly elements to flights. Following definition of the manifest, intra-
flight planning defines cargo elements as compositions of assembly elements manifested to
the flight and places cargo elements in the cargo bay.

The manifest and its associated intra-flight cargo-element groupings and cargo bay
placements are in essence a "hypothesis” which is tested by comparing performance
measures derived from the hypothesis with standards defined by programmatic/milestone
constraints, NSTS constraints, and SSF hardware constraints. Measures include mass,
volume, center of gravity (CG), the power requirement, the intra- and extra-vehicular
activity (IVA and EVA) requirements, and the Remote Manipulator System (RMS) reach
requirement. If measures and/or margins violate constraints, the invalidated part of the
plan is revised by changing/relaxing constraints or changing elements of the plan: the
manifest, cargo element definition, or cargo bay placement.

©ISX Corporation

Requirements Specification:
Knowledge-Based Decision-Support System for SSF Engineering Managers

Internal

Figure 1: The SSF Assembly Sequence Planning Process

©ISX Corporation

Requirements Specification: 7
Knowledge-Based Decision-Support System for SSF Engineering Managers

When the SSFPO is satisfied with the validity of plans (normally after informal
consultation with external groups), they are documented in a Space Station Stage Summary
Databook, which is distributed for review to SSF engineering groups, who perform analyses
and identify constraint violations. SSFPO collects feedback on constraint violations and
uses the feedback to drive plan revisions.

Although this description may suggest that assembly sequence planning begins anew with
each planning cycle, with constraints and plans being defined and developed from scratch
on each iteration, assembly sequence planning is in fact an ongoing process in which
constraints and plans are revisions of prior constraint definitions and plans.

There are two major areas in which the assembly sequence planning process is problematic:
the assembly sequence planner's work load and the maintenance of plan data. Much of the
assembly sequence planner's load is attributable to tedious and time-consuming analyses
that involve executing procedures, applying well-known heuristics, and processing the
horrendous detail of plan data, including assembly elements, constraints, and all their
interdependencies. This is the intellectual "scut work" of analysis and planning, and the
load it imposes often prevents the planner from spending time doing the creative problem
solving required for assembly sequence planning. It also makes it difficult for the planner
to provide quick responses to questions and to perform the depth and breadth of analysis
needed to produce a new baseline plan or evaluate a what-if.

3.2 System Vision

There is an opportunity to unload the planner by providing a personal "assistant" in a
machine that would perform the work that is currently so tedious and time-consuming. The
assistant would be a "Personal Analysis Assistant” that helps the human planner by doing
the bookkeeping to maintain plan data and executing the procedures and heuristics
currently used by the human planner to define flights, develop flight manifests, define and
place cargo elements, calculate performance measures, and identify violated constraints.
This unloading would speed the planning process, enable greater depth and breadth of
analysis, and free the human planner to spend more time doing what only the human
planner can do: evaluating analysis results; revising invalid assumptions, constraints
and plans; generating new solutions to assembly sequence planning; and testing solution
hypotheses with what-ifs.

Assembly sequence planning is a difficult problem for humans, and full automation is
beyond the capability of current technology (and is probably not desirable, in any case). The
system is, therefore, intended to assist the human planner, not to automate the assembly
sequence planning process. The planner will specify the tasks the system is to perform, e.g.,
validate specified flight plans, define cargo elements and place them in the cargo bay of a
flight, or define flights and flight manifests for specified major milestones. The planner
will also specify the assumptions the system is to use, e.g., flight plans, assembly elements,
manifests, and constraints. Given these specifications, the system will generate results.
The planner will then review the results, possibly request explanations of results or follow-
up analyses, and then make the final decisions, potentially modifying the computer-
generated plan. The system is essentially a laboratory for the assembly sequence planner,
providing an environment in which the planner can define and run conceptual experiments
that help him do the problem solving needed to generate plans.

The Personal Analysis Assistant (PAA) is one of several "assistant” systems built on the
Manager's Assistant (MAX) framework. The MAX framework, which is an infrastructure

©ISX Corporation

Requirements Specification: 8
Knowledge-Based Decision-Support System for SSF Engineering Managers

supporting the development of specific assistant systems, and the PAA will be developed
concurrently but under separate funding. The infrastructure will support both system
developers in producing the specific assistant system and user organizations in
maintaining and extending system knowledge bases.

Intra-Flight Value-Added) Inter-Flight Value-Added)
- ‘\T 7 N
User ¢
Interface
Validator M?del
Builder
k System Infrastructure)

Figure 2: Top-Level Architecture of the Personal Analysis Assistant

Figure 2 shows the top-level architecture of the Personal Analysis Assistant (PAA) system.
The functions shown in the figure are grouped into three major software elements: the
System Infrastructure, Intra-Flight Value-Added, and Inter-Flight Value-Added.

e The System Infrastructure provides the capability for building representations of
assembly sequence plans, e.g., flights, manifests, cargo elements, and associated
performance measures; networks of dependencies among plan objects; constraint
networks describing bounds on measures; and user-specifications of constraints and
analysis options. It also supports calculation of performance measures and

©ISX Corporation

Functionality

Requirements Specification:
Knowledge-Based Decision-Support System for SSF Engineering Managers

identification of violated constraints, and intra-flight plans. This corresponds to
“Validate Plans" in Figure 1. Finally, it is the substrate on which functions providing

inter-flight and intra-flight value-added functionality are built.

o Intra-Flight Value-Added provides functionality that will, given the manifest for each
flight, define cargo elements, place them in the NSTS cargo bay, compute performance
measure values, and identify violated constraints. This corresponds to support of
"Develop Intra-Flight Plans" and "Validate Plans" in Figure 1.

e Inter-Flight Value-Added provides functionality that will, given major milestone
dates and capability requirements, determine the number and dates of required flights

and develop a manifest for each flight.

As shown in Figure 3, the system is evolutionary in that it is based on the System
Infrastructure, which provides value to the planner at the earliest stages of development and
builds on that value by supporting the addition of new functionality and the enhancement of
existing functionality over the life of the system.

* New Functionality

Enhancements of
Existing
Functionality Inter-Flight
Value-Added
: Intra-Flight
Intra-Flight Value -Added
ded

Value -Ad

Value -Added

Infrastructure Infrastructure

Time

Figure 3: The System Concept is Evolutionary, Providing Early Value and Supporting the
Addition and Enhancement of Functionality.

©ISX Corporation

Requirements Specification: 10
Knowledge-Based Decision-Support System for SSF Engineering Managers

4.0 Top-Level Objects

Application objects are grouped into seven top-level
(system users), the Personal Analysis Assistant, Information Sources, Constraints, Plan

Elements, Work Products, and Information Consumers. These objects and their top-level

relationships are shown in Figure 4. The connecting arrows denote message connections

between the objects, connections in which a "sender” sends a message to a "receiver” in
order to cause processing to be done by the receiver.

objects: Assembly Sequence Planners

., Information required to generate
»“,” information responses to
’ -
- /l Information Consumer requests

’
-’ 7 ,i
'l

P Constraints
O
]
Constraint : .
Personal |definitions ,' ' Information
Analysis _ A : Sources
Assistant Analysis~ ~ - :
inputs ? 1
]
~—0O > Assembly 1
P Sequence X
Analysis Planners ‘
./ outputs *~ '
4
S M) \
\
Information- - ‘¢ Inf N G \
responses n ormta ron Y
Plan Reports requests Informationl Feedback on
Elements Consumers| information
responses
!
[
1
{

!
Documentation of
information responses

Figure 4: Top-Level Objects and Message Connections

graphs. Detailed descriptions of lower-

Top-level objects are defined in the following para
attributes and the processing to be

level objects, including structural relationships,
performed by objects, sre presented in Section 6.

©ISX Corporation

Requirements Specification: 11
Knowledge-Based Decision-Support System for SSF Engineering Managers

Object: Assembly Sequence Planners (PAA system users)

Description: SSFPO staff and contractors who, given requests for information from
Information Consumers and information supplied by Information
Sources, generate information required by Information Consumers.

Object: Personal Analysis Asssistant

Description: A software system that supports Assembly Sequence Planners in
developing new baseline assembly sequence plans and in performing
what-if analyses that provide responses to questions on proposed
perturbations of the current baseline.

Object: Information Sources

Description: Sources of information, including human sources, databases, and
computational tools, that provide information needed to generate
information requested by Information Consumers.

Object: Constraints

Description: Constraints on the development of an assembly sequence plan,
including programmatic constraints and constraints associated with
the NSTS and the SSF hardware configuration. '

Object: Plan Elements

Description: Parts of assembly sequence plans, including launch manifests, flights,
cargo elements, and the results of analyses measuring plan goodness.

Object: Reports

Description: Documents that provide information to SSF Information Consumers on
the baseline assembly sequence and preliminary stage definition or in
response to questions posed by Information Consumers regarding
proposed perturbations of the baseline assembly sequence.

Object: Information Consumers

Description: Persons who use information generated by SSFPO Information
Analysts, as documented in the Space Station Stage Summary Databook
or What-If Reports. They are representatives of SSF functional
organizations.

Operational Scenarios

5.0

There are two classes of operational scenarios relevant to assembly sequence planning:

e Development of a new baseline assembly sequence plan for documentation in the Space
Station Stage Summary Databook.

e Performing what-if analyses that provide responses to questions on proposed
perturbations of the current baseline, e.g., "What if the NSTS mass capacity was
increased by 13,000 lbs?".

This section describes PAA operational scenarios in each of these classes. For each
scenario, the scenario class, enabling software elements, the goal or or capability illustrated
by the scenario, and assumed prior conditions are identified, followed by a specification of

process steps.

©ISX Corporation

Requirements Specification:

Knowledge-Based Decision-Support System for SSF Engineering Managers

5.1 Baseline Development Scenarios

Scenario 1

Class:
Enabler:
Goal:

Conditions:

Process:

Scenario 2

Class:
Enabler:
Goal:

Conditions:

Baseline Development

System Infrastructure

User definition of constraints, inter-flight plans, and intra-flight
plans; PAA validation of plans

The user knows the following:

o the SSF configuration, including definition of assembly elements

o NSTS constraints, including standards for mass, volume, center
of gravity (CG), Remote Manipulator System (RMS) utilization,
and EVA

e major milestones, i.e., dates for milestones such as Man-Tended
Capability (MTC), Permanent Manned Capability (PMC), and
Assembly Complete (AC)

e dates and definition of phases within major milestones, e.g.,
Spacecraft Activation, Primary Hardware Control, and
International Element Delivery ‘

o priorities for each phase, e.g., spacecraft activation, health and
status data to the ground, respond to command and control
signals, and insure continuance of assembly -- all priorities for
the Spacecraft Activation phase

* the flight schedule

* cargo element definition

* cargo element assignment to flights

* cargo element placement in the NSTS cargo bay

The PAA/user system performs the following:

e the user enters assembly elements, NSTS constraints, milestones,
phases, priorities into the PAA (constraints)

e the user enters number and timing of flights, assignment of
assembly elements to flights into the PAA (inter-flight plans)

¢ the user enters cargo elements and placement of cargo elements
in the NSTS cargo bay into the PAA (intra-flight plans)

e the PAA computes values for measures including mass, volume,
center of gravity (CG), Remote Manipulator System (RMS)
utilization, EVA requirements, IVA requirements, operability,
reliability.

e the PAA compares computed values to standards defined by
constraints and identifies and assesses criticality of violated
constraints

o the PAA reports violated constraints and estimated criticality to
the user

¢ the user modifies any or all of the givens defined in Conditions
and reruns the process .

Baseline Development

System Infrastructure, Intra-Flight Value Added

User definition of constraints and inter-flight plans; PAA definition of
intra-flight plans and validation of plans

The user knows the following:

©ISX Corporation

Requirements Specification: 13
Knowledge-Based Decision-Support System for SSF Engineering Managers

Process:

Scenarwo 3

Class:
Enabler:

Goal:

Conditions:

e the SSF configuration, including definition of assembly elements

o NSTS constraints, including standards for mass, volume, center
of gravity (CG), Remote Manipulator System (RMS) utilization,
and EVA

* major milestones, i.e., dates for milestones such as Man-Tended
Capability (MTC), Permanent Manned Capability (PMC), and
Assembly Complete (AC)

e dates and definition of phases within major milestones, e.g.,
Spacecraft Activation, Primary Hardware Control, and
International Element Delivery

« priorities for each phase, e.g., spacecraft activation, health and
status data to the ground, respond to command and control
signals, and insure continuance of assembly -- all priorities for
the Spacecraft Activation phase

¢ the flight schedule

The PAA/user system performs the following:

e the user enters assembly elements, NSTS constraints, milestones,
phases, priorities into the PAA (constraints)

e the user enters number and timing of flights, assignment of
assembly elements to flights into the PAA (inter-flight plans)

e the PAA defines cargo elements

e the PAA places cargo elements in the NSTS cargo bay for each
flight

e the PAA computes values for measures including mass, volume,
center of gravity (CG), Remote Manipulator System (RMS)
utilization, EVA requirements, IVA requirements, operability,
reliability.

e the PAA compares computed values to standards defined by
constraints and identifies and assesses criticality of violated
constraints

« the PAA identifies and prioritizes potential intra-flight solutions
to constraint-violation problems

o the PAA develops task plans for implementing the intra-flight
solutions

e the PAA reports violated constraints, estimated criticality of
violations, and suggested intra-flight solutions to the user

e the user tells the PAA to implement the high priority suggested
solution OR the user modifies any or all of the givens defined in
Conditions and reruns the process

e if the user tells the PAA to implement a suggested solution, the
PAA implements the solution, revalidates, replans if necessary,
and reports results to the user

Baseline Development)
System Infrastructure, Intra-Flight Value Added, Inter-Flight Value
Added
User definition of constraints; PAA definition of intra-flight plans,
inter-flight plans, and validation of plans
The user knows the following:
e the SSF configuration, including definition of assembly elements
o NSTS constraints, including standards for mass, volume, center
of gravity (CG), Remote Manipulator System (RMS) utilization,

©ISX Corporation

Requirements Specification: 4

Knowledge-Based Decision-Support System for SSF Engineering Managers

and EVA
* major milestones, i.e., dates for milestones such as Man-Tended

Capability (MTC), Permanent Manned Capability (PMC), and
Assembly Complete (AC)

e dates and definition of phases within major milestones, e.g.,
Spacecraft Activation, Primary Hardware Control, and
International Element Delivery

» priorities for each phase, e.g., spacecraft activation, health and
status data to the ground, respond to command and control
signals, and insure continuance of assembly -- all priorities for
the Spacecraft Activation phase

Process: The PAA/user system performs the following:

« the user enters assembly elements, NSTS constraints, milestones,
phases, priorities into the PAA (constraints)

o the PAA defines number and timing of flights and assigns
assembly elements to flights

e the PAA defines cargo elements

e the PAA places cargo elements in the NSTS cargo bay for each
flight

« the PAA computes values for measures including ‘mass, volume,
center of gravity (CG), Remote Manipulator System (RMS)
utilization, EVA requirements, IVA requirements, operability,
reliability.

e the PAA compares computed values to standards defined by
constraints and identifies and assesses criticality of violated
constraints

e the PAA identifies and prioritizes potential intra-flight or inter-
flight solutions to constraint-violation problems

o the PAA develops task plans for implementing the solution

e the PAA reports violated constraints, estimated criticality of
violations, and suggested solutions to the user

e the user tells the PAA to implement the high priority suggested
solution OR the user modifies any or all of the givens defined in
Conditions and reruns the process

« if the user tells the PAA to implement a suggested solution, the
PAA implements the solution, revalidates, replans if necessary,
and reports results to the user

5.2 What-If Scenarios

Scenario 4
Class: What-If
Enabler: System Infrastructure, Intra-Flight Value Added, Inter-Flight Value
Added o
Goal: User definition of a constraint change; PAA revision’ of constraints,
revision of plans, and revalidation
Conditions: The following exists in the PAA:

e models of constraints, including NSTS constraints, SSF
Hardware constraints, and programmatic constraints

¢ inter-flight and intra-flight assembly sequence plans consistent
with constraints or inconsistent in known ways

©ISX Corporation

Requirements Specification:

15

Knowledge-Based Decision-Support System for SSF Engineering Managers

Process:

Scenario 5

Class:
Enabler:

Goal:

Conditions:

Process:

The user provides the following:

e a constraint change, e.g., use of Advanced Solid Rocket Motors
(ASRM)

The PAA/user system performs the following:

e the user enters the constraint change into the PAA, e.g., use of the
ASRM increases NSTS payload mass capacity from 47,000 to
60,000 pounds

« the PAA propagates the change to affected constraints

e the PAA revalidates the existing plan against changed
constraints, finding for example that the current plan does not
load to mass capacity

e the PAA identifies alternative solutions to the problem, e.g.,
reassign cargo elements to flights followed by relocation of cargo
elements to flights with possible redefinition of cargo elements

o the PAA reports the violated constraint and the suggested solutions
to the user

¢ the user tells the PAA to implement the suggested solution

* the PAA implements the suggested solution

e the PAA revalidates the changed plan, develops solutions to new
problems if necessary, and reports the results to the user

What-If
System Infrastructure, Intra-Flight Value Added, Inter-Flight Value

Added
User definition of a plan change; PAA revision of constraints, revision
of plans, and revalidation
The following exists in the PAA:
e models of constraints, including NSTS constraints, SSF
Hardware constraints, and programmatic constraints
¢ inter-flight and intra-flight assembly sequence plans consistent
with constraints or inconsistent in known ways
The user provides the following:
* a plan change, e.g., a reassignment of two cargo elements to
different flights
The PAA/user system performs the following:
e the user enters the plan change into the PAA, e.g., the cargo
elements are moved to different flights
o the PAA propagates the change to affected plan elements
e the PAA revalidates the changed plan, finding for example that
the new plan violates the CG constraint
e the PAA identifies alternative solutions to the problem, e.g.,
relocate cargo elements in the cargo bay or reassign cargo
elements or redefine cargo elements)
o the PAA reports the violated constraint and the suggested solutions
to the user
e the user tells the PAA to implement the suggested solution
« the PAA implements the suggested solution
e the PAA revalidates the changed plan, develops solutions to new
problems if necessary, and reports the results to the user

©ISX Corporation

Requirements Specification: 16
Knowledge-Based Decision-Support System for SSF Engineering Managers

6.0 Object Details

This section provides detailed object descriptions, including structural relationships,
attributes, and processing. The focus is on the Personal Analysis Assistant; descriptions of
other object classes identified in Section 4 are provided only to the extent necessary to support
description of PAA objects and interfaces to PAA objects. The section begins with a
description of PAA objects. This is followed by descriptions of objects in the environment
external to the PAA -- the non-PAA objects introduced in Section 4. The section ends with
descriptions of interfaces between PAA objects and external objects.

6.1 The PAA

6.1.1 Structure

PAA objects form an assembly structure; that is, objects are parts of other objects. The PAA
assembly structure is summarized in Figure 6. The figure uses a triangle to indicate an "is
part of" relationship, e.g., the hardware platform and the software applications are parts of

the PAA.
6.1.1.1 Hardware Platform

The hardware platform object is defined below. The hardware platform has been specified by
the customer to be a Macintosh II series platform. No further specification will be provided.

Object: Hardware Platform

Description: Hardware platform for System Infrastructure, Intra-Flight Value-
Added, and Inter-Flight Value-Added software. Customer-specified to
be Macintosh II series platforms widely available at the SSFPO and
Booz-Allen & Hamilton facilities.

6.1.1.2 Software Applications

Top-level software application objects are defined below. Each top-level PAA software object
(System Infrastructure, Intra-Flight Value Added, and Inter-Flight Value Added) are
decomposed as shown in Figure 6. Descriptions of these lower-level objects are presented in
Section 6.1.2. '

Object: System Infrastructure

Description: Software that provides the capability for building representations of
assembly sequence plans, e.g., flights, manifests, cargo elements, and
associated performance measures; networks of dependencies among
plan objects; constraint networks describing bounds on measures; and
user-specifications of constraints and analysis options. It also supports
calculation of performance measures and identification of violated
constraints, and intra-flight plans. The PAA System Infrastructure is
built on the MAX framework, which supports development of objects
described in Section 6.1.2 and extension of associated knowledge bases
by SSFPO and Booz-Allen & Hamilton staff.

Object: Intra-Flight Value-Added

Description: Software that, given the manifest for each flight, defines cargo
elements, places them in the NSTS cargo bay, computes performance
measure values, and identifies violated constraints. PAA Intra-Flight

©ISX Corporation

Requirements Specification: 17

Knowledge-Based Decision-Support System for SSF Engineering Managers

Value-Added is built on the MAX framework, which supports
development of objects described in Section 6.1.2 and extension of
associated knowledge bases by SSFPO and Booz-Allen & Hamilton

staff.
PAA
Hardware Software
Platform Applications
System Intra-Flight Inter-Flight

Infrastructure Value Added Value Added

4 & b

— User — Intra-Flight [~ Inter-Flight
Interface Planner Planner

— Plan — Intra-Flight [~Inter-Flight
Editor Validator Validator

— Constraint & Intra-Flight '—Inter-Flight
Editor Problem Problem

Solving Solving

— Plan
Builder Models Models

— Constraint
Model Builder

— Plan
Representations

— Constraint
Models

— Value
Calculators

— Validator

i—Problem Recognition
Models

Figure 6: Personal Analysis Assistant Structure

Object: Inter-Flight Value-Added
Description: Software that, given major milestone dates and capability
requirements, determines the number and dates of required flights and

©ISX Corporation

Requirements Specification: 18
Knowledge-Based Decision-Support System for SSF Engineering Managers

develops a manifest for each flight. PAA Inter-Flight Value-Added is
built on the MAX framework, which supports development of objects
described in Section 6.1.2 and extension of associated knowledge bases
by SSFPO and Booz-Allen & Hamilton staff.

6.1.2 Processing

Figure 7 shows lower-level PAA software application objects and message connections. The
Assembly Sequence Planners object is also shown to provide context. Other objects external
to the PAA and the interfaces of these objects with PAA objects are described in Sections 6.2

and 6.3, respectively.

The figure is intended to be an overview of the behavior of the system, providing context for
understanding the isolated behaviors of the objects described below. The figure is divided
into three parts: System Infrastructure objects, Intra-Flight Value Added objects, and Inter-
Flight Value Added objects. The Problem Solving Model object is shown overlapping the
boundaries of the Intra-Flight Value Added and Inter-Flight Value Added top-level objects
because the problem solving knowledge in the Problem Solving Model object is applicable to
both the Intra-Flight Planner and the Inter-Flight Planner.

‘

6.1.2.1 User Interface Specification

Object Name: User-Interface
Description: System Infrastructure software that provides "user friendly” interfaces
to plan and constraint editors, representations of plan and constraint
models, and the Validator object. The User-Interface object also
provides input checking, a display manager, and maintenance of a
User Model that enables interpretation of user input and preparation by
the display manager of output meeting the user's information
requirements.
Attributes: Selection <type, location>
User-Input <type, completeness, consistency>
System-Input <type, completeness, consistency, level of abstraction>
Information-Requirements <type, level of abstraction>
User-Output <type, location, level-of-abstraction>
Processing: Check-Selection
o check selection arguments against selection attribute constraints
e if constraints not met, return <no match> to display-manager
¢ if display-manager receives a <no match>, it prepares and posts a
selection-failure message on the display
e if constraints are met, pass through selection to appropriate
receiver
Check-User-Input
e check input arguments against input attribute constraints
e if a violation occurs, return violation identity to display-
manager .
o check input arguments against expectation defined by user-model
e if a consistency violation occurs, return violation identity to
display-manager
« if display-manager receives a violation identity, it prepares and
posts an input-violation message on the display
e if constraints are met, update information requirements
e if information requirements are updated, pass input and
information requirements to appropriate receiver

©ISX Corporation

Requirements Specification:
Knowledge-Based Decision-Support

System for SSF Engineering Managers

19

Assembly
Sequence
: Planners .
User inputs - - = = = « = _ Information
_ ~~-"" displays
Plan revision -
X recommendations| . USeF User's constraint
. S -eao Interface definition inputs
C’ s
User'splan - — - ... e 'High-leyel
definition inputs const‘rqmt
HiohJevel s definitions
gh-leve '
lan definitions 4
plang ~ Plan Constraint
Editor Editor
Plan Constraint
Builder) ‘1 Model
) Builder
. - Low-level I)
Plan plan 1 : ' s
elements ¥ definitions /¢ 1| 1 .
) T .
1 [N . A
el 6 Plan Information requests Constraint * Low-level
/ Represen- & responses Models constraint
tations definitions
Value ' “
Calculators ! \
) Validator ' Problem
' h - Recognition
Validation data Colnstramt Models
values
-0 — —-— Q
-~
> Constraint '
Performance violations, values ‘\
measures] \ - .
td . '
. L ll |}
4 i
G. > Problem
.. Intra- Inter- recognition
- Planner | Solving | Planner
'R Models ,
1 Y 4
1) ’
\ ' \ / Problem solving
knowledge

/

—

©ISX Corporation

\ b
Figure 7: Personal Analysis Assistant Objects and Message Connections

Requirements Specification:
Knowledge-Based Decision-Support System for SSF Engineering Managers

Update-User-Model
e with user-input and expectation from user-model, define new
expectation
« send new expectation to user-model
Update-Information-Requirements
« with user-input and expectation from user-model, define type and
level of abstraction of information required
Prepare-Output
o check system-input against information requirements
e if a violation occurs, return system-input and information-
requirements to sender
e if no violation occurs, send system-input to display-manager
e if display-manager receives system-input, it prepares and posts
information on the display

6.1.2.2 Plan Editor Specification

Object Name: Plan-Editor

Description: System Infrastructure software that provides capabilities supporting
viewing, selecting, and editing assembly sequence plan elements,
including the launch manifest, cargo elements, placement of cargo
elements in the NSTS cargo bay, and assembly elements.

Attributes: Selection <type>
User-Input <type>
System-Input <element-type, completeness, consistency, level of
abstraction>
Add-Element <element-type>
Change-Element <element-type, change-type>
Delete-Element <element-type>
Plan-Builder-Output <type>

Processing: Check-Selection
e check selection arguments against selection attribute constraints

e if constraints not met, return <no match> to User-Interface object
« if constraints are met, continue to check-system-input
Check-System-Input
e check system-input arguments against system-input attribute
constraints
« if a violation occurs, return violation identity to sender
Add-Plan-Element
e check user-input and system-input arguments against add-
element attribute constraints
e if a violation occurs, return violation identity to sender
e if no violation occurs, send input to Plan-Builder object
* send process completion message to requestor
Change-Plan-Element _
o check user-input and system-input arguments against change-
element attribute constraints
¢ if a violation occurs, return violation identity to sender
e if no violation occurs, send input to Plan-Builder object
* send process completion message to requestor
Delete-Plan-Element '
e check user-input and system-input arguments against delete-
element attribute constraints

©ISX Corporation

Requirements Specification: 21
Knowledge-Based Decision-Support System for SSF Engineering Managers

« if a violation occurs, return violation identity to sender
« if no violation occurs, send input to Plan-Builder object
* send process completion message to requestor

6.1.2.3 Constraint Editor Specification

Object Name: Constraint-Editor
Description: System Infrastructure software that provides capabilities supporting
viewing, selecting, and editing constraint models, including NSTS
Constraints, SSF Hardware Constraints, and Programmatic
Constraints.
Attributes: Selection <type>
User-Input <type>
System-Input <type, completeness, consistency, level of abstraction>
Add-Constraint <constraint-type>
Change-Constraint <constraint-type>
Delete-Constraint <constraint-type>
Constraint-Model-Builder-Output <type>
Processing: Check-Selection)
e check selection arguments against selection attribute constraints
e if selection attribute constraints not met, return <no match> to
User-Interface object
e if constraints are met, continue to check-system-input
Check-System-Input
e check system-input arguments against system-input attribute
constraints
e if a system-input attribute constraint violation occurs, return
violation identity to sender
« if no violation occurs, pass input to appropriate procedure
Add-Constraint
o check user-input and system-input arguments against add-
constraint attribute constraints
e if a violation occurs, return violation identity to sender
« if no violation occurs, send input to Plan Builder
« send process completion message to requestor
Change-Constraint
e check user-input and system-input arguments against change-
constraint attribute constraints
« if a violation occurs, return violation identity to sender
« if no violation occurs, send input to Constraint-Model-Builder
« send process completion message to requestor
Delete-Constraint
o check user-input and system-input arguments against delete-
constraint attribute constraints
« if a violation occurs, return violation identity to sender
« if no violation occurs, send input to Constraint-Model-Builder
e send process completion message to requestor

6.1.2.4 Plan Builder Specification

Object Name: Plan-Builder
Description: System Infrastructure software that, given high-level Plan-Editor
requests to add, change, or delete plan elements (assembly elements,

©ISX Corporation

Requirements Specification: 22
Knowledge-Based Decision-Support System for SSF Engineering Managers

Attributes:

Processing:

cargo elements, cargo bay placement, flights, and launch manifests),
generates the implementation of requests in the Plan-Representation.
Implementation of plan element edits includes generation of low-level
effects from high-level edits and propagation of effects throughout the
affected Plan-Representation.
Selection <type>
System-Input <type, completeness, consistency, level of abstraction>
Add-Element-Problem <element-type, problem-type, criticality>
Change-Element-Problem <element-type, change-type, problem-type,
criticality>
Delete-Element-Problem <element-type, problem-type, criticality>
Check-Selection
« check selection arguments against selection attribute constraints
« if constraints not met, return <no match> to Plan-Editor object
« if constraints are met, continue to check-system-input
Check-System-Input
e check system-input arguments against system-input attribute
constraints
e if a violation occurs, return violation identity to sender
« if no violation occurs, pass input to appropriate procedure
Add-Plan-Element
o identify affected Plan-Representation context
e identify proposed tasks for implementation of plan element
addition
« identity problems created by proposed tasks for implementation of
plan element addition (primary problems)
¢ identify secondary tasks created by proposed tasks for
implementation of plan element addition (propagation tasks)
e identity problems created by secondary tasks for implementation
of plan element addition (secondary problems)
e check primary and secondary problems against add-element-
problem attribute constraints
« if a violation occurs, return violation identity and criticality to
sender
e if no violation occurs, implement all tasks
e if sender confirms change, implement all tasks even with
violations
« send process completion message to requestor
Change-Plan-Element
* identify affected Plan-Representation context
e identify proposed tasks for implementation of plan element
change
« identity problems created by proposed tasks for implementation of
plan element change (primary problems)
o identify secondary tasks created by proposed tasks for
implementation of plan element change (propagation tasks)
« identity problems created by secondary tasks for implementation
of plan element change (secondary problems)
e check primary and secondary problems against change-element-
problem attribute constraints
e if a violation occurs, return violation identity and criticality to
sender
e if no violation occurs, implement all tasks

©ISX Corporation

Requirements Specification: 23
Knowledge-Based Decision-Support System for SSF Engineering Managers

e if sender confirms change, implement all tasks even with
violations

« send process completion message to requestor

Delete-Plan-Element

¢ identify affected Plan-Representation context

¢ identify proposed tasks for implementation of plan element
deletion

¢ identity problems created by proposed tasks for implementation of
plan element deletion (primary problems)

o identify secondary tasks created by proposed tasks for
implementation of plan element deletion (propagation tasks)

* identity problems created by secondary tasks for implementation
of plan element deletion (secondary problems)

e check primary and secondary problems against delete-element-
problem attribute constraints

e if a violation occurs, return violation identity and criticality to
sender

e if no violation occurs, implement all tasks

« if a violation occurs and sender confirms deletion, implement all
tasks .

« identity problems created by implemented tasks (primary and
secondary problems)

e check primary and secondary problems against delete-element-
problem attribute constraints

o if a violation occurs, return violation identity and criticality to
sender

« send process completion message to requestor

6.1.2.5 Constraint Model Builder Specification

Object Name:
Description:

Attributes:

Processing:

Constraint-Model-Builder
System Infrastructure software that, given high-level Constraint-Editor
requests to add, change, or delete constraints (NSTS Constraints, SSF
Hardware Constraints, Programmatic Constraints), generates the
implementation of requests in the Constraint-Model. Implementation
of constraint edits includes generation of low-level effects from high-
level edits and propagation of effects throughout the affected Constraint-
Model.
Selection <type>
System-Input <type, completeness, consistency, level of abstraction>
Add-Constraint-Problem <constraint-type, problem-type, criticality>
Change-Constraint-Problem <constraint-type, problem-type,
criticality>
Delete-Constraint-Problem <constraint-type, problem-type, criticality>
Check-Selection

o check selection arguments against selection attribute constraints

e if constraints not met, return <no match> to sender

e if constraints are met, continue to check-system-input
Check-System-Input

* check system-input arguments against system-input attribute

constraints :

e if a violation occurs, return violation identity to sender

» if no violation occurs, pass input to appropriate procedure
Add-Constraint

©ISX Corporation

Requirements Specification: A
Knowledge-Based Decision-Support System for SSF Engineering Managers

« identify affected Constraint-Model context

« identify proposed tasks for implementation of constraint addition

* identity problems created by proposed tasks for implementation of
constraint addition (primary problems)

s identify secondary tasks created by proposed tasks for
implementation of constraint addition (propagation tasks)

« identity problems created by secondary tasks for implementation
of constraint addition (secondary problems)

o check primary and secondary problems against add-constraint-
problem attribute constraints

eif a violation occurs, return violation identityidentity and
criticality to sender

e if no violation occurs, implement all tasks

« if a violation occurs and sender confirms addition, implement all
tasks

* identity problems created by implemented tasks (primary and
secondary problems)

e check primary and secondary problems against add-element-
problem attribute constraints

e if a violation occurs, return violation identity and criticality to
sender

e send process completion message to requestor

Change-Constraint .

¢ identify affected Constraint-Model context

« identify proposed tasks for implementation of constraint change

* identity problems created by proposed tasks for implementation of
constraint change (primary problems)

e identify secondary tasks created by proposed tasks for
implementation of constraint change (propagation tasks)

¢ identity problems created by secondary tasks for implementation
of constraint change (secondary problems)

o check primary and secondary problems against change-element-
problem attribute constraints

e if a violation occurs, return violation identity and criticality to
sender

e if no violation occurs, implement all tasks

e if a violation occurs and sender confirms change, implement all
tasks

e identity problems created by implemented tasks (primary and
secondary problems)

« check primary and secondary problems against change-element-
problem attribute constraints

e if a violation occurs, return violation identity and criticality to
sender

« send process completion message to requestor

Delete-Constraint

« identify affected Constraint-Model context

« identify proposed tasks for implementation of constraint deletion

« identity problems created by proposed tasks for implementation of
constraint deletion (primary problems)

e identify secondary tasks created by proposed tasks for
implementation of constraint deletion (propagation tasks)

« identity problems created by secondary tasks for implementation

©ISX Corporation

Requirements Specification: 25
Knowledge-Based Decision-Support System for SSF Engineering Managers

of constraint deletion (secondary problems)

e check primary and secondary problems against delete-element-
problem attribute constraints

e if a violation occurs, return violation identity and criticality to
sender

« if no violation occurs, implement all tasks

e if a violation occurs and sender confirms deletion, implement all
tasks

« identity problems created by implemented tasks (primary and
secondary problems)

o check primary and secondary problems against delete-element-
problem attribute constraints

e if a violation occurs, return violation identity and criticality to
sender

¢ send process completion message to requestor

6.1.2.6 Plan Representation Specification

Object Name:
Description:

Attributes:

Processing:

Plan-Representation
System Infrastructure software that stores assembly sequence plan
representations, including assembly elements, cargo elements, cargo
bay placements, flights, launch manifests, and interrelations among
plan elements. Plan-Representation also stores the results of
evaluations of plan representations produced by the Validator and
provides information to the User-Interface, the Plan-Builder, and
Value-Calculators. Changes in plan representations are accomplished
through messages sent by the Plan-Builder, the Intra-Flight-Planner,
or the Inter-Flight-Planner.
System-Input <type, completeness, information requirements>
Add-Element-Problem <element-type, problem-type, criticality>
Change-Element-Problem <element-type, change-type, problem-type,
criticality>
Delete-Element-Problem <type, problem-type, criticality>
Value-Calculation <type, plan-representation-identifier>
Check-System-Input

e check system-input arguments against system-input attribute

constraints

« if a violation occurs, return violation identity to sender

« if no violation occurs, pass input to appropriate procedure
Add-Plan-Element

« implement tasks for plan element addition

« identity problems created by implementation of plan element

addition

e check problems against add-element-problem attribute
constraints)

e if a violation occurs, return violation identity and criticality to
sender

¢ send process completion message to requestor
Change-Plan-Element

* implement tasks for plan element change

« identity problems created by implementation of plan element

change
¢ check problems against change-element-problem attribute

©ISX Corporation

Requirements Specification: 2%
Knowledge-Based Decision-Support System for SSF Engineering Managers

constraints
e if a violation occurs, return violation identity and criticality to
sender
* send process completion message to requestor
Delete-Plan-Element
« implement tasks for plan element deletion
« identity problems created by implementation of plan element

deletion

e check problems against delete-element-problem attribute
constraints

e if a violation occurs, return violation identity and criticality to
sender

« send process completion message to requestor
Request-Value-Calculation
o form value-calculation request using value-calculation attribute
e send value-calculation request to Value-Calculation
Record-Validation
e associate validation data received from Validation with
appropriate plan element
Information-Response
¢ identify information meeting system-input information
requirements
* get requested information
¢ send information to requestor

3

6.1.2.7 Constraint Model Specification

Object Name: Constraint-Models

Description: System Infrastructure software that stores assembly sequence plan
constraints, including NSTS Constraints, SSF Hardware Constraints,
Programmatic Constraints, and interrelations among constraints.
Constraint-Models also provides information to the User-Interface, the
Constraint-Model-Builder, and the Validator. Changes in constraint
models are accomplished through messages sent by the Constraint-
Model-Builder.

Attributes: System-Input <type, completeness, information requirements>
Add-Constraint-Problem <constraint-type, problem-type, criticality>
Change-Constraint-Problem <constraint-type, change-type, problem-
type, criticality>
Delete-Constraint-Problem <type, problem-type, criticality>

Processing: Check-System-Input

o check system-input arguments against system-input attribute
constraints
« if a violation occurs, return violation identity to sender
« if no violation occurs, pass input to appropriate procedure
Add-Constraint
* implement tasks for constraint addition
¢ identity problems created by implementation of constraint

addition

e check problems against add-element-problem attribute
constraints '

e if a violation occurs, return violation identity and criticality to
sender

©ISX Corporation

Requirements Specification: 27
Knowledge-Based Decision-Support System for SSF Engineering Managers

« send process completion message to requestor
Change-Constraint
o implement tasks for constraint change
* identity problems created by implementation of constraint change
e check problems against change-element-problem attribute
constraints
e if a violation occurs, return violation identity and criticality to
sender
* send process completion message to requestor
Delete-Constraint
e implement tasks for constraint deletion
« identity problems created by implementation of constraint

deletion

e check problems against delete-element-problem attribute
constraints

e if a violation occurs, return violation identity and criticality to
sender

e send process completion message to requestor
Information-Response
e identify information meeting system-input « information
requirements
* get requested information
¢ send information to requestor

6.1.2.8 Value Calculator Specification

Object Name: Value-Calculator

Description: System Infrastructure software that identifies and computes
performance measures appropriate to the plan representation
information sent by the Plan-Representation object. Measures include
cargo mass, volume, center of gravity (CG), power requirements, extra-
vehicular activity (EVA) requirement, and Remote Manipulator
System (RMS) reach requirements. This object provides information to
the Validator.

Attributes: System-Input <type, completeness>
Report-Form <type, parameters, plan-representation>
Processing: Check-System-Input
e check system-input arguments against system-input attribute
constraints

« if a violation occurs, return violation identity to sender
« if no violation occurs, pass input to appropriate procedure
Identify-Measures
e select measures appropriate for plan representation contained in
value-calculation-request received from Plan-Representations
Get-Plan-Representation
* request plan data from Plan-Representation
Compute-Measures
e compute identified measures on plan data supplied by Plan-
Representation
Report-Measures
* form report using Report-Form attributes
s send computed performance measures with plan representation
identifier to Validator

©ISX Corporation

Requirements Specification: 28
Knowledge-Based Decision-Support System for SSF Engineering Managers

6.1.2.9 Validator Specification

Object Name:
Description:

Attributes:

Processing:

Validator
System Infrastructure software that compares values of performance
measures provided by Value-Calculator to standards defined by
Constraint-Models and determines whether measures violate
constraints using knowledge provided by Problem-Recognition-
Models. Provides information to the User-Interface, Plan-
Representations, the Intra-Flight Planner and the Inter-Flight
Planner.
System-Input <type, completeness>
Report-Form <type, parameters, plan-representation>
Check-System-Input
e check system-input arguments against system-input attribute
constraints
« if a violation occurs, return violation identity to sender
« if no violation occurs, pass input to appropriate procedure
Get-Constraints
« identify constraints relevant to perfomance measures provided by
the Value-Calculator '
« get identified constraints
Validate
e compare performance measures with standards defined by
constraints
* send comparisons to Problem-Recognition-Models for evaluation
Report-Results
e develop report using response from Problem-Recognition-Models
and Report-Form attributes
« send report with plan representation identifier to User-Interface,
Plan-Representations, Intra-Flight-Planner, and Inter-Flight-
Planner.

6.1.2.10 Problem Recognition Model Specification

Object Name:
Description:

Attributes:
Processing:

Problem-Recognition-Models
System Infrastructure software that is a knowledge-based server for the
Validator. The object evaluates comparisons of performance measures
and standards defined by constraints provided by the Validator to
determine whether measures violate constraints. It provides results of
the evaluation to the Validator.
System-Input <type, completeness>
Check-System-Input
e check system-input arguments against system-input attribute
constraints
« if a violation occurs, return violation identity to sender
_e if no violation occurs, pass input to appropriate procedure
Identify-Knowledge
¢ identify knowledge relevant to evaluating measure-constraint
comparisons provided by the Validator
Evaluate
e execute evaluation by applying identified knowledge to measure-
constraint comparisons
« send results to the Validator

©ISX Corporation

Requirements Specification:

Knowledge-Based Decision-Support System for SSF Engineering Managers

6.1.2.11 Intra-Flight Planner Specification

Object Name:
Description:

Attributes:

Processing:

Intra-Flight-Planner
Intra-Flight Value Added software that, given intra-flight constraint
violation problems identified by the Validator and problem solutions
suggested by Intra-Flight-Problem-Solving-Models, selects and
implements solutions. Solutions are implemented by developing and
executing task plans producing required changes to the Plan-
Representation. Provides information to the User-Interface and Plan-
Representations.
Selection <type>
System-Input <type, completeness, consistency, level of abstraction>
Solution-Request <problem-type>
Add-Element-Problem <element-type, problem-type, criticality>
Change-Element-Problem <element-type, change-type, problem-type,
criticality>
Delete-Element-Problem <element-type, problem-type, criticality>
Check-System-Input
e check system-input arguments against system—ifxput attribute
constraints
e if a violation occurs, return violation identity to sender
« if no violation occurs, pass input to appropriate procedure
Get-Solutions
» prepare solution-request using solution-request attributes
« send solution-request to Problem-Solving-Models
Select-Solution
e evaluate solutions provided by Problem-Solving-Models to
identify a recommended solution
« send recommendation to User-Interface
o if user confirms change, implement all tasks
e if user does not confirm change, select and recommend another
solution
¢ if no solution can be selected, stop
Implement-Addition-Tasks
« identify affected Plan-Representation context
e identify proposed tasks for implementation of plan element
addition
¢ identity problems created by proposed tasks for implementation of
plan element addition (primary problems)
« identify secondary tasks created by proposed tasks for
implementation of plan element addition (propagation tasks)
* identity problems created by secondary tasks for implementation
of plan element addition (secondary problems)
e check primary and secondary problems against add-element-
problem attribute constraints
« if a violation occurs, return violation identity and criticality to
sender
e if no violation occurs, implement all tasks
e if sender confirms change, implement all tasks even with
violations '
* send process completion message to requestor
Implement-Change-Tasks

©ISX Corporation

Requirements Specification:

Knowledge-Based Decision-Support System for SSF Engineering Managers

« identify affected Plan-Representation context

« identify proposed tasks for implementation of plan element
change

* identity problems created by proposed tasks for implementation of
plan element change (primary problems)

« identify secondary tasks created by proposed tasks for
implementation of plan element change (propagation tasks)

« identity problems created by secondary tasks for implementation
of plan element change (secondary problems)

o check primary and secondary problems against change-element-
problem attribute constraints

e if a violation occurs, return violation identity and criticality to
sender

« if no violation occurs, implement all tasks

o if sender confirms change, implement all tasks even with
violations

« send process completion message to requestor

Implement-Delete-Tasks

e identify affected Plan-Representation context

« identify proposed tasks for implementation of ‘plan element
deletion

« identity problems created by proposed tasks for implementation of
plan element deletion (primary problems)

¢ identify secondary tasks created by proposed tasks for
implementation of plan element deletion (propagation tasks)

* identity problems created by secondary tasks for implementation
of plan element deletion (secondary problems)

e check primary and secondary problems against delete-element-
problem attribute constraints

e if a violation occurs, return violation identity and criticality to
sender

« if no violation occurs, implement all tasks

« if a violation occurs and sender confirms deletion, implement all
tasks

e identity problems created by implemented tasks (primary and
secondary problems)

e check primary and secondary problems against delete-element-
problem attribute constraints

e if a violation occurs, return violation identity and criticality to
sender

« send process completion message to requestor

6.1.2.12 Inter-Flight Planner Specification

Object Name:
Description:

Attributes:

Inter-Flight-Planner

Inter-Flight Value Added software that, given inter-flight constraint
violation problems identified by the Validator and problem solutions
suggested by Inter-Flight-Problem-Solving-Models, selects and
implements solutions. Solutions are implemented by developing and
executing task plans producing required changes to the Plan-
Representation. Provides information to the User-Interface and Plan-
Representations.

Selection <type>

©ISX Corporation

Requirements Specification: 31
Knowledge-Based Decision-Support System for SSF Engineering Managers

Processing:

System-Input <type, completeness, consistency, level of abstraction>
Solution-Request <problem-type>
Add-Element-Problem <element-type, problem-type, criticality>
Change-Element-Problem <element-type, change-type, problem-type,
criticality>
Delete-Element-Problem <element-type, problem-type, criticality>
Check-System-Input
o check system-input arguments against system-input attribute
constraints
« if a violation occurs, return violation identity to sender
« if no violation occurs, pass input to appropriate procedure
Get-Solutions
* prepare solution-request using solution-request attributes
¢ send solution-request to Problem-Solving-Models
Select-Solution
e evaluate solutions provided by Problem-Solving-Models to
identify a recommended solution
» send recommendation to User-Interface
e if user confirms change, implement all tasks
e if user does not confirm change, select and recommend another
solution
« if no solution can be selected, stop
Implement-Addition-Tasks
¢ identify affected Plan-Representation context
e identify proposed tasks for implementation of plan element
addition
* identity problems created by proposed tasks for implementation of
plan element addition (primary problems)
o identify secondary tasks created by proposed tasks for
implementation of plan element addition (propagation tasks)
* identity problems created by secondary tasks for implementation
of plan element addition (secondary problems)
e check primary and secondary problems against add-element-
problem attribute constraints
« if a violation occurs, return violation identity and criticality to
sender
e if no violation occurs, implement all tasks
e if sender confirms change, implement all tasks even with
violations
« send process completion message to requestor
Implement-Change-Tasks
* identify affected Plan-Representation context
« identify proposed tasks for implementation of plan element
change
e identity problems created by proposed tasks for implementation of
plan element change (primary problems) .
* identify secondary tasks created by proposed tasks for
implementation of plan element change (propagation tasks)
* identity problems created by secondary tasks for implementation
of plan element change (secondary problems)
e check primary and secondary problems against change-element-
problem attribute constraints
e if a violation occurs, return violation identity and criticality to
sender

©ISX Corporation

A Taw s

~ g B

Requirements Specification:

Knowledge-Based Decision-Support System for SSF Engineering Managers

e if no violation occurs, implement all tasks

e if sender confirms change, implement all tasks even with
violations

» send process completion message to requestor

Implement-Delete-Tasks

o identify affected Plan-Representation context

e identify proposed tasks for implementation of plan element
deletion

« identity problems created by proposed tasks for implementation of
plan element deletion (primary problems)

o identify secondary tasks created by proposed tasks for
implementation of plan element deletion (propagation tasks)

s identity problems created by secondary tasks for implementation
of plan element deletion (secondary problems)

o check primary and secondary problems against delete-element-
problem attribute constraints

e if a violation occurs, return violation identity and criticality to
sender

e if no violation occurs, implement all tasks

e if a violation occurs and sender confirms deletion, implement all
tasks

» identity problems created by implemented tasks (primary and
secondary problems)

e check primary and secondary problems against delete-element-
problem attribute constraints

« if a violation occurs, return violation identity and criticality to
sender

+ send process completion message to requestor

6.1.2.13 Intra-Flight Problem Solving Model Specification

Object Name:
Description:

Attributes:
Processing:

Problem-Solving-Models
Intra-Flight and Inter-Flight Value Added software that is a
knowledge-based server for the Intra-Flight Planner and the Inter-
Flight Planner. Problem-Solving-Models contains knowledge about
how to solve assembly sequence plan problems. The object uses
information in the solution-request provided by the Intra-Flight or
Inter-Flight Planner to identify and prioritize potential solutions. It
provides results to the information requestor, either the Intra-Flight-
Planner or the Inter-Flight-Planner.
System-Input <type, completeness>
Check-System-Input

e check system-input arguments against system-input attribute

constraints

« if a violation occurs, return violation identity to sender

« if no violation occurs, pass input to appropriate procedure
Identify-Knowledge

« identify knowledge relevant to identifying and prioritizing

solutions
« execute identification and prioritization
¢ send results to requestor

©ISX Corporation

Requirements Specification: 33
Knowledge-Based Decision-Support System for SSF Engineering Managers

6.2 The External Environment

Objects forming the external environment of the PAA were introduced in Section 4. This
section describes the structure of these objects to a level of detail permitting definition of the
content of the PAA Constraint Model and Plan Representations objects and identification of
interfaces between PAA objects and external information sources and information
consumers. These external interfaces are defined in Section 6.3.

External environment objects form either an assembly structurelike that described for PAA
objects in Section 6.1 or a hierarchical classification structure in which objects are
instances of other objects. A typical hierachical classification structure is shown in Figure 8
for the Information Sources object. The figure uses a semi-circle to indicate an "is a"
relationship, e.g., an external system is an information source.

6.2.1 Assembly Sequence Planners

Although there is a hierarchical classification of Assembly Sequence Planners, e.g., levels
of SSFPO planners and Booz-Allen & Hamilton planners, it is not necessary to define this
structure in order to define PAA interfaces.

i

6.2.2 Information Sources

There are two information sources. The structure is shown in Figure 8. Descriptions of the
two top-level objects follow the figure.

Information
Sources
External Human
Systems Information

Suppliers

Figure 8: Information Sources Structure

Object: External Systems
Description: Databases and computational tools that provide information needed to
generate information required by Information Consumers.

Object: Human Information Suppliers

Description: Persons, usually representatives of SSF functional organizations, who
define constraints and other information needed to generate
information requested by Information Consumers.

There are hierarchical classification structures below the External Systems object and the
Human Information Suppliers object, and it may be necessary to decompose these objects to at
least one more level in order to completely specify the PAA system. Further decomposition is
not possible at the present time, however, because information on SSFPO external systems
and NASA organizations is not currently available. Structural details for Information
Sources will be specified in later versions of the requirements document, which will be
developed in subsequent phases of PAA system development.

©ISX Corporation

Requirements Specification:
Knowledge-Based Décision-Support System for SSF Engineering Managers

6.2.3 Constraints

Real-world assembly sequence planning constraints will be represented in the PAA's
Constraint Model object. There is a rich constraint structure for assembly sequence
planning constraints, characterized by numerous and complex interrelationships among
constraints. The first two levels of the hierarchical classification structure of constraints
are shown in Figure 9. Further decomposition will be required, and the structure must be
represented as a network in order to capture the complex relationships among constraints
required for development of the Constraint Model object. The information required for this
detailed analysis of constraints is not presently available to ISX, however, and will require
extensive knowledge acquisition involving SSFPO and Booz-Allen & Hamilton staff early

in the next phase of PAA system development.

Constraints
NSTS SSF Hardware Programmatic '
Constraints Constraints Constraints
— Mass — Assembly — Major
Elements Milestones
— Volume, — Power — Phases
Dimensions Requirements
— Center of —Loading — Flights by
Gravity (CG) | Requirements| Phase
L RMS Access —Failure — Orbit,
Tolerance Altitude
—EVA — Truss Layout [~Failure
Tolerance
—IVA — Modules —Telerobotics
Use
L Flight Rate — Module — Assembly
i Layout Logistics
1
— Performance | — NSTS
to Orbit : Interfaces
— Cargo Return — Groundrules and
Weight Guidelines
— Crew Size i

Figure 9: Constraints Structure

©ISX Corporation

Requirements Specification:

Knowledge-Based Decision-Support System for SSF Engineering Managers

First-level constraint objects are briefly described as follows:

Object: NSTS Constraints

Description: Constraints associated with the NSTS, e.g., flight rate, EVA support,
and cargo bay mass, volume, center of gravity.

Object: SSF Hardware Constraints

Description: Constraints associated with SSF hardware configuration, e.g.,
assembly elements, power requirements, and mass, volume and shape
of assembly elements.

Object: Programmatic Constraints

Description: Constraints defined by SSFPO and above, e.g., major milestones,
system redundancy, life support.

624 Plan Elements

Assembly sequence plan elements will be represented in the Plan Representations object of
the PAA. These representations will be manipulated by assembly sequence planners
through the Plan Editor and by the Intra-Flight Planner and the Inter-Flight Planner.
There are five top-level plan elements related in an assembly structure: the Launch

Manifest, Flights,

Cargo Elements, Cargo Element Locations, and Assembly Elements.

Figure 10 shows the assembly structure for these objects, along with related objects: the cargo
bay and validations and values for plan elements. The Cargo Bay object is represented in
the PAA Constraint Model. The Validations and Values are produced by the PAA Validation
and Value Calculator objects, respectively, and are stored with the plan representation.

Object:

Description:

Object:

Description:

Object:

Description:

Object:

Description:

Object:

Description:

Launch Manifest

The inter-flight assembly sequence plan which specifies the number
and timing of flights, the assignment of cargo elements to flights, and
the location of cargo elements in the NSTS cargo bay; the inter-flight

plan.

Flight
Specification of the assignment of cargo elements to flights, the
placement of cargo elements in the NSTS cargo bay; the intra-flight

plan.

Cargo Element
Elements to be loaded into the NSTS cargo bay; may be an assembly
element or an aggregation of assembly elements.

Cargo Element Location
The location in the NSTS cargo bay at which a cargo element is placed
and the orientation of the cargo element. Related objects include treadle

positions.
Assembly Element

Lowest level elements of the SSF configuration. Defined by SSF
Hardware constraints.

©ISX Corporation

Requirements Specification:
Knowledge-Based Decision-Support System for SSF Engineering Managers

Launch —}——¢ Validations 4—A¢ Value

Manifest Calculations

A single Cargo Element
maps to many Assembly Eements

Flight 4——}¢ Validations 4——j¢ _Value

Calculations

A A
Cargo | P Element | | Cargo | K Validations -} I Value

Bay Location/ Element Calculations
A single Element Location %
maps to a single Cargo Element
Assembly
Element

Figure 15: Structure of Plan Elements

6.2.5 Reports

As shown in Figure 16, there are two top-level reports. Descriptions of the two report objects
follow the figure. Each report can be decomposed into assembly structures, but it is not
necessary to define these structures in order to define PAA requirements.

Reports
SSF Stage What-If

Summary Reports
Databook

Figure 15: Reports Structure

Object: Space Station Stage Summary Databook

Description: A document issued periodically that provides information to SSF
Information Consumers with information relative to the baseline
assembly sequence and preliminary stage definition. It serves as a
common database for lower level analyses, a mechanism to control the
next level of detail with respect to the configuration assembly sequence,
and a starting point for the stage definition process.

©ISX Corporation

Requirements Specification: 37
Knowledge-Based Decision-Support System for SSF Engineering Managers

Object: What-If Reports

Description: Documents issued in response to questions posed by Information
Consumers regarding proposed perturbations of the baseline assembly
sequence and preliminary stage definition documented in the Space
Station Stage Summary Databook. The form of these documents is
variable, ranging from formal reports to memos to presentations to
telephone conversations.

6.2.6 Information Consumers

There is a hierarchical classification structure of Information Consumers, but it is not
necessary at the present time to define this structure below the class level in order to define

PAA requirements.
63 External Interfaces

There are potentially interfaces between PAA objects and Information Sources and between
PAA objects and Information Consumers. These interfaces cannot be defined at the present
time because details of Information Sources and Information Consumers objects are not
available to ISX. Because the customer has directed that there shall be no attempt to interface
directly between the PAA and Information Sources or Information Consumers, no further
specification of external interfaces will be provided.

©ISX Corporation

T
i e

s
e

M

L

A e
e

i

e T
= e

R

i
howih
AL A

e

Preliminary Design Document

Knowledge-Based Decision-Support System
for SSF Engineering Managers

Submitted By
ISX Corporation
501 Marin St., Suite 214
Thousand Oaks, CA 91360

June 15, 1990

Funded By

NASA Ames Research Center
Small Business Innovative Research Contract NAS2-13161

1.0

2.0

3.0

4.0

5.0

6.0

Table of Contents

Introduction

1.1 Purpose and Scope
1.2 Identification

1.3 Acronyms

14 Notation

1.5 Background

References

Task Definitions and Groupings
3.1 Major Problem Solving Tasks
3.2 Task Groupings

Major System Functions
41 Major Functions and Requirements Specification Objects
4.2 Generalizing the Architecture

Technology Assessment and Selection
5.1 Platform

5.2 Language

5.3 Development Environment
54 Representation

5.5 Database

5.6 Planner

Detailed Specifications

6.1 User Interface

6.2 Plan Editor

6.3 Constraint Editor

6.4 Plan Builder

6.5 Constraint Model Builder
6.6 Plan Representation

6.7 Constraint Model

6.8 Value Calculator

6.9 Validator

6.10 Problem Recognition Model
6.11 Problem Solving Model
6.12 Resource Capability Model
6.13 Planning Engine

6.14 Development Tools

(o %, > CO DD b pt b

-3 =3

[Je]

RRRRERRBELSEEEEE BREREREER

System Design:
Knowledge-Based Decision-Support System for SSF Engineering Managers

1.0 Introduction
1.1 Purpose and Scope

This document describes the top-level system design for a knowledge-based decision-support
system for Space Station Freedom (SSF) engineering managers. The target application is
SSF assembly sequence planning. Development of this design is funded by NASA Ames
Research Center (ARC) Phase I SBIR (Small Business Innovative Research) Contract

NAS2-13161.
1.2 Identification

This is the first released version of the top-level system design document for a knowledge-
based decision-support system for SSF engineering managers. It is designated version 1
and is dated June 15, 1990.

This work was performed using ISX's Intelligent Systems Engineering (ISE) methodology.
A key feature of the ISE methodology is the early and continuous use of prototypes to inform
the development of requirements and the system design. The top-level design described in
this document, and the requirements specification cited in Section 2, were developed with the
support of prototypes used to express and test assumptions and approaches. As additional
prototypes are developed, requirements and the design will also continue to develop,
increasing in both depth and breadth. These enhancements and extensions will be
documented in subsequent drafts of this design document and the requirements
specification, which will be issued periodically as the products of work performed under a
subsequent contract.

1.3 Acronyms

ARC NASA's Ames Research Center

cG Center of Gravity

FOA Focus of Attention

ISE Intelligent Systems Engineering

MAX Manager's Assistant

NSTS National Space Transportation System (the Shuttle)
PAA Personal Analysis Assistant

SBIR Small Business Innovative Research

SSF Space Station Freedom

SSFPO Space Station Freedom Program Office

©ISX Corporation

System Design:
Knowledge-Based Decision-Support System for SSF Engineering Managers

1.4 Notation

Object A

Object B Object C Assembly Structure: Object B is part of Object A

Object A

Object B Object C Hierarchical Classification Structure: Object B is an Object A

Object A

Object B Instance Connection: 1 Object A is connected to many Object Bs

©ISX Corporation

System Design: 3
Knowledge-Based Decision-Support System for SSF Engineering Managers

1.5 Background

This work is funded by ARC Phase I SBIR Contract NAS2-13161. The objective is the
development of specifications for a knowledge-based decision-support system for Space
Station Freedom (SSF) engineering managers.

Following meetings with Paul Neumann and Ben Barker of the Space Station Freedom
Program Office (SSFPO) and conversations with Henry Lum of ARC and Gregg Swietek of
SSFPO, it was determined that SSF assembly sequence planning is an appropriate
application for the Phase I SBIR, and that the SSFPO is sufficiently interested to provide staff
to support application assessment, requirements analysis, and design activities. The
customer and expert for the proposed application is Bill Bastedo of the SSFPO. Mr. Bastedo
offered two days of his and his staff's time to support an application assessment, followed by
occasional review of requirements and design documentation.

Based on experience derived from hundreds of projects conducted over the past seven years,
ISX has developed an Intelligent Systems Engineering (ISE) methodology that combines the
methods of systems engineering and knowledge engineering to meet the special systems
development requirements posed by intelligent systems, systems that blend artificial
intelligence and other advanced technologies with more conventional computing
technologies. The ISE methodology defines a phased program process that begins with
application screenings designed to provide a preliminary determination of the relative
technical risks and payoffs associated with a potential application, and then moves through
application assessments to requirements analysis, system design, and development.

The Application Assessment. Using information provided by’ Paul Neumann and Ben
Barker, ISX completed the application screening in December, 1989. The next step,
performed on February 26 and 27, 1990, was the application assessment. The assessment
team included Bill Bewley, Gary Edwards, David Rosenberg, and Allen Smith of ISX. Peter
Warren and Brook Sullivan of Booz-Allen & Hamilton were the application experts, and
Bill Bastedo of the SSFPO provided application information in the form of feedback to a
presentation of preliminary assessment results on the afternoon of February 27. The
assessment indicated the value and feasibility of a personal "assistant” in a machine that
would perform the work that is currently so tedious and time-consuming for the human
assembly sequence planner. The assistant would be a "Personal Analysis Assistant” that
helps the human planner by doing the bookkeeping to maintain plan data and executing the
procedures and heuristics currently used by the human planner to define flights, develop
flight manifests, define and place cargo elements, calculate performance measures, and
identify violated constraints. The document "Application Assessment Report: Space Station
Assembly Sequence Planning,” cited in Section 2, presents assessment results in detail.

The Requirements Analysis. The requirements analysis for the Personal Analysis
Assistant followed the application assessment. The document "Requirements Analysis:
Knowledge-Based Decision-Support System for SSF Engineering Managers,” cited in
Section 2, describes the results of the requirements analysis. These results can be briefly
summarized as follows. The Personal Analysis Assistant (PAA) is a set of software
applications running on Macintosh II series platform as directed by SSFPO. The software
applications are represented as three top-level objects: the System Infrastructure, Intra-
Flight Value Added, and Inter-Flight Value Added. SSFPO and Booz-Allen & Hamilton
staff will be able to extend knowledge bases associated with each object. The System
Infrastructure is the substrate on which software elements providing inter-flight and intra-
flight value-added functionality are built. It provides the capability for building
representations of assembly sequence plans, e.g., flights, manifests, cargo elements, and

©ISX Corporation

System Design:
Knowledge-Based Decision-Support System for SSF Engineering Managers

associated performance measures; networks of dependencies among plan objects;
constraint networks describing bounds on measures; and user-specifications of constraints
and analysis options. It also supports calculation of performance measures and
identification of violated constraints, and intra-flight plans. It is composed of the following
lower-level objects: user interface, plan editor, constraint editor, plan builder, constraint
model builder, plan representations, constraint models, value calculators, validator, and
problem recognition models. Intra-Flight Value-Added provides functionality that will,
given the manifest for each flight, define cargo elements, place them in the NSTS cargo bay,
compute performance measure values, and identify violated constraints. Lower-level
objects include the intra-flight planner, the intra-flight validator, and intra-flight problem-
solving models. Inter-Flight Value-Added provides functionality that will, given major
milestone dates and capability requirements, determine the number and dates of required
flights and develop a manifest for each flight. Lower-level objects include the inter-flight
planner, the inter-flight validator, and inter-flight problem-solving models. The
definitions of these objects presented in Section 6 of "Requirements Analysis: Knowledge-
Based Decision-Support System for SSF Engineering Managers” serve as a starting point
for the more detailed definitions produced in the system design.

System Design. The ISE system design process begins with an examination of the major
problem-solving tasks performed by the system as defined by the requirements analysis
objects. These tasks are then collected into functionally-related groups, and the tasks and
groupings are evaluated by applying them to the operational scenarios defined in the
requirements analysis. Following revisions of task definitions and groupings that may be
suggested by the evaluation, and possibly a series of subsequent evaluation-revision cycles,
major system functions are identified, including the user interface. Alternative
technologies are then assessed for their applicability to each system function, and "best fit"
technologies are selected and assigned to functions to form major system components.
Specification of system components and their interactions follows, and the resulting design
is evaluated by mapping scenario events to system components. Design revisions suggested
by the scenario-based evaluation may lead to a series of evaluation-revision cycles, usually
based on a series of design prototypes. The design prototypes are also used to guide
development of the user interface, each prototype expressing the current conception of the
appearance and behavior of the system in interaction with the user. Evaluations of designs
(and requirements) involve the user as a major contributor from the beginning of the

process.

Task definitions, groupings, and their application to operational scenarios are described in
Section 3. Section 4 presents current definitions of major system functions, including the
user interface. Section 5 summarizes technology assessment, selection, and assignment to
system functions. Detailed specifications of system components and their interactions are
presented in Section 6.

20 References

Application Assessment Report: Space Station Assembly Sequence Planning. ISX
Corporation. March 6, 1990.

Kaidy, James T., and Bastedo, William G. Space Station Assembly Sequence Planning: An
engineering and operational challenge. Proceedings of the AIAA, 1988.

Requirements Specification: Knowledge-Based Decision-Support System for SSF
Engineering Managers. Version 0.1, 1SX Corporation, April 27, 1990.

©ISX Corporation

System Design: 5
Knowledge-Based Decision-Support System for SSF Engineering Managers

Space Station Stage Summary Databook. Space Station Freedom Program Office,
December 15, 1989.

Warren, P. Baseline Assembly Sequence Rationale, February 28, 1990.

Warren, P. and Sullivan, B. ASRM Trade Study, 1990.

3.0 Task Definitions and Groupings

This section presents definitions of the major problem solving tasks to be performed by the
PAA system and a description of functionally-related task groupings.

3.1 Major Problem Solving Tasks

As described in the requirements specification (see the reference in Section 2), assembly
sequence planning is an ongoing process in which planning activity follows revisions of
prior constraint definitions and plans. Constraint revisions can apply to NSTS Constraints,
SSF Hardware Constraints, and Programmatic Constraints. Plan revisions can include
changes in the manifest (inter-flight plans) and changes in intra-flight plans (definition of
cargo elements and placement of cargo elements in the NSTS cargo bay). When
constraint/plan revisions have been made, the PAA replans, revising elements of inter- and
intra-flight plans as necessary, and then validates the new plans by computing measures
such as mass on each flight and comparing measures to standards defined by constraints.
The PAA then reports the results of validation, which may cause the human planner to revise
constraints or plan elements and rerun the PAA to generate a revised plan.

An analysis of the process description has led to definition of the following problem solving
tasks to be performed by the PAA:

1. User Review of Constraints
Provide support for user review of constraints, which are organized into the
following categories: NSTS Constraints, e.g., volume and mass capacity, flight
rate; SSF Hardware Constraints, e.g., configuration and assembly elements; and
Programmatic Constraints, e.g., major program milestones and priorities. This
task assumes the existence of a stored representation of constraints. To support
constraints review, the PAA displays the stored representation as requested by the

user.

2. User Revision of Constraints
Provide support for user revision of constraints. This assumes the existence of a
stored representation of constraints. The PAA provides facilities to enable the user

to edit the representation.

3. Update Constraints
To support user revision of constraints, the PAA changes the representation as
specified by the user and propagates effects of user revisions to associated

constraints.
4. User Review of Plan Elements

Provide support for user review of assembly sequence plan elements, which are
organized into the following categories: Inter-Flight (flight manifest); and Inter-

©ISX Corporation

System Design:

Knowledge-Based Decision-Support System for SSF Engineering Managers

Flight (cargo element definition, cargo element placement). This task assumes
the existence of a stored representation of plans. To support plan review, the PAA
displays the stored representation as requested by the user.

User Revision of Plan Elements
Provide support for user revision of plan elements. This assumes the existence of a
stored representation of plan elements. The PAA provides facilities to enable the

user to edit the representation.

Update Plans
To support user revision of plan elements, the PAA changes the representation as
specified by the user and propagates effects of user revisions to associated plan

elements.

Replan
Given revisions of constraints and/or plan elements, replan as necessary by
performing the following subtasks:
a. Inter-Flight Planning
Develop the flight manifest:
i. determine the number and timing of flights
ii. assign assembly elements to flights
b. Intra-Flight Planning
i. define cargo elements
ii. place cargo elements

Validate Plan
Given a replan, analyze and evaluate the replan by performing the following

subtasks:

a. Compute Measures, e.g., mass, volume, center of gravity (CG), the power
requirement, the intra- and extra-vehicular activity requirements, and the
Remote Manipulator System reach requirement

b. Compare Measures to Standards

Report Results

Given a user request to review constraints or plans, completion of constraint or
plan element revision by the user, replanning, or validation, report results to the
user by performing the following subtasks:

a. Access Required Information from Appropriate Database(s)

b. Format Information for Display

c¢. Display Information

82 Task Groupings

A common heuristic in system design is that similar tasks should be performed by the same
system function. This section defines four major groupings of similar tasks which serve as
a starting point for the definition of major system functions. ’

User Interface

1. User Review of Constraints

4. User Review of Plan Elements
9. Report Results

Representation Editing

©ISX Corporation

System Design:
Knowledge-Based Decision-Support System for SSF Engineering Managers

2. User Revision of Constraints
5. User Revjsion of Plan Elements

¢ Representation Building
3. Update Constraints
6. Update Plans

e Plan Generation
7. Replan
a. Inter-Flight Planning
b. Intra-Flight Planning

¢ Plan Validation
8. Validate Plan
a. Compute Measures
b. Compare Measures to Standards

4.0 Major System Functions
4.1 Major Functions and Requirements Specification Objects

The task groupings identified in Section 3.2 suggest the following major system functions:
User Interface, Representation Editing, Representation Building, Plan Generation, and
Plan Validation. These functions and associated problem-solving tasks can be mapped to
the PAA objects identified in the requirements specification (see the reference in Section 2)
as follows:

Requi Obiect

Maijor Svstem Functions Tasks

User Interface 1. User Review of Constraints User Interface
4. User Review of Plan Elements
9. Report Results
Representation Editing 9. User Revision of Constraints Constraint Editor

5. User Revision of Plans Plan Editor

Representation Building 3. Update Constraints Constraint Builder
6. Update Plans Plan Builder
Plan Generation 7. Replan

Plan Validation

Figure 1 shows the objects and message connec
specification. This figure is an initial functional a
objects representing the major PAA functions and
Constraint Models) and knowledge (Problem Reco

®

a. Inter-Flight Planning
b. Intra-Flight Planning

Validate Plan
a. Inter-Flight Planning
b. Intra-Flight Planning

Models) required to perform those functions.

©ISX Corporation

Intra-Flight Planner
Inter-Flight Planner

Value Calculators
Validator

tions identified in the requirements
rchitecture for the PAA. It includes
the data (Plan Representations and
gnition Models and Problem Solving

Prok;lem éolving
knowledge

/

System Design: 8
Knowledge-Based Decision-Support System for SSF Engineering Managers
Assembly
Sequence
L _Plarmers Information
D - -~ displays
A
User User's constraint
Interface definition inputs
C" . ’
man ______ .7 ' High-leyel
/| definition inputs , constraint
¢+ definitions
High-level !
lan definitions
plang ~ = Plan Constraint
Editor Editor
Plan A Constraint
Builder 93 Model
, Builder
. - Low-level o]
Plan plan 1 : ' A
elements ¥ definitions /¥ 1| ! .
L] | Y 1 “
)] 1] . A
/—9'_> Plan Information requests Constraint * Low-level
/ Represen- & responses Models constraint
tations definitions
Value ‘ i v
Calculators N \
‘ Validator \ Problem
! M - Recognition
Validation data Constraint Models
values
-9 — —— Q
-~
> Constraint '
Performance violations, values ‘|
measures] | -+ \
- s " ‘\
I g ! \
It Tote Problem
ntra- nter- "
. . . A recognition
Plan revision Flight -aQ-| Problem lop Flight knowledge
recommendations Planner Solvi Planner
Y [N olving |s
Y . Models ,
A \ 4
)

e —

Figﬁre 1: SSF Personal Analysis Assistant Architecture

©ISX Corporation
G-2

System Design: g
Knowledge-Based Decision-Support System for SSF Engineering Managers

4.2 Generalizing the Architecture

The objective of the work performed under this Phase I SBIR is to develop requirements and a
top-level design for a Manager's Assistant (MAX) system that can provide knowledge-based
decision-support for SSF engineering managers. The target application is SSF assembly
sequence planning, but it must not be the only application enabled by the system design.
Because the PAA is only one of several "assistant” systems that can be built on the MAX
framework, the objects that satisfy PAA requirements must be generalized to define the
general assistant system support functions of MAX.

Figure 2 shows a generalization of this PAA software architecture that represents part of an
initial top-level design for a MAX framework. The primary changes are the replacement of
the Intra-Flight Planner and Inter-Flight Planner objects with a single "Planning Engine”
object, the replacement of the Intra-Flight Value Added and Inter-Flight Value Added top-
level objects with a single "Planner” object, and the addition of a "Development Tools" top-
level object.

MAX objects form the assembly structure summarized in Figure 3. The figure uses a
triangle to indicate an "is part of” relationship, e.g., the System Infrastructure is part of
MAX.)

The three top-level MAX software objects are defined below. Each top-level MAX software
object (System Infrastructure, Planner, and Development Tools) is decomposed as shown in
Figure 3. Descriptions of these lower-level objects are presented in Section 6.

Object: System Infrastructure

Description: Software that provides the capability for building representations of
plans, networks of dependencies among plan objects; constraint
networks describing bounds on measures; and user-specifications of
constraints and analysis options.

Object: Planner

Description: A domain-independent planner design and execution environment
based on ISX's ASTAIRE system, which was developed in part with
support provided by a NASA ARC Phase I1 SBIR. ASTAIRE is a reactive
planner responding to changes in situation status, e.g., constraints or
plan elements. The system uses domain-dependent knowledge:
Problem Recognition Models, Problem Solving Models, and Resource
Capability Models. These models can be maintained and extended by
user organization staff.

Object: Development Tools

Description: A development environment designed to support the creation,
maintenance, and extension of assistant systems such as the PAA
Tools include editors, a user interface tool, libraries of reusable objects,
a source code inspector, and a debugger. These tools can be used by user
organization staff to perform system maintenance and extension of
knowledge bases

©ISX Corporation

System Design:

Knowledge-Based Decision-Support System for SSF Eng

ineering Managers

10

Users
|
Plan revision
recommendations, e .
\ e : ~ . .
_ Userinputs | User Information yser's constraint
. Interface displays definition inputs
C . L7
m ______ ’ 'High-leyel
4 definition inputs , constraint
¢ definitions
High-level '
lan definition —— A
plan ¢ ~ Plan ‘ Constraint
Editor Editor
Plan Constraint
Builder o Model
) Builder
_ - Low-level |,
Plan plan -
elements ¥ definitions /1] ¢ *.
‘1 | I 1 Y
1 1 1 . v
—— G Plan ! Constraint \ Low-level
] . w-leve
(——9— Represen- Inforén::;or;;:;;:ests Models constraint
/ tations P definitions
\
\
¥
) i 1
Validation data—————— (Constraint
Validator 1 Probl Problem
» Performance values , reo g:ln: Recognition
4" measures cognition]
Value it " .’ knowledge Models
Calculators|--—Q . -0
Constraint ——
violations, values Problem
. Solving
. Models
Planning o
Eng-ine -} 0D source
Plan revision o Capability
recommendation: Problem solving _Models
. knowledge
) G
\ . T = Resource capability
. / knowledge

Figure 2: MAX Architecture

©ISX Corporation

System Design:

Knowledge-Based Decision

|

-Support System for SSF Engineering Managers

Hardware Software
Platform Applications
System Development
Infrastructure Planner Tools
— User — Value —Text Editor
Interface Calculators
— Plan — Validator — Structure
Editor Editor
— Constraint _ Problem Recognition — User Interface
Editor Models Tool
— Plan — Problem Solving — Bitmap
Builder Models Editor
— Constraint — Resource Capability — Inspector
Model Builder Models
— Plan Repre- = Planning — Interactive
sentations Engine Debugger
- Constraint — Stepper
Models
L~ FOA Trees —Tracing, Break-
pointing, Profiling
— Gituation —Pretty Printer
Models
L Problem — Object Library
L Models
Resource
Models

Figure 3: MAX Structure

©ISX Corporation

11

System Design: ©

Knowledge-Based Decision-Support System for SSF Engineering Managers

50 Technology Assessment and Selection

This section describes a preliminary assessment of alternative technologies. Technology
choices are, of course, highly interdependent (an assistant system would be very helpful),
and their are many interrelated constraints that must be satisfied. Assessment will
continue as the design becomes more detailed, and selections will be made early in Phase II

of the program.
5.1 Platform

The customer for PAA has specified a Macintosh IL For MAX, anticipated user interface
and processing requirements suggests the use of a high-performance workstation such as the
Macintosh II or SE/30, the TI Micro-Explorer, or the Sun 3/4. If possible, MAX should run on
several different platforms with a minimum of porting. Important factors in choice of
platform are performance, the availability of a development environment that provides
many of the tools required for MAX Development Tools, and support for the selected
knowledge and data representation(s).

52 Language ‘

If knowledge and data are represented as objects, an object-oriented programming system,
such as Smalltalk or CLOS, would be appropriate. Smalltalk has the advantage of being
highly portable, but performance may be a problem. CLOS has good development tools, as
does Smalltalk.

53 Development Environment

It would be highly desirable, if not required, to use a development environment that provides
most of the tools specified for MAX Development Tools. Such development environments
exist, e.g., ExperTelligence's Procyon Common Lisp, and it would be foolish to reinvent
basic technology. The capabilities provided by the development environment is an
important constraint on the selection of platforms and a language.

54 Representation

The highly interconnected nature of the knowledge and data in the PAA and other domains
requiring the decision support of an assistant system suggests the use of object networks.
The need for modularity and easy maintenance and extension of knowledge also points to
the use of objects.

55 Database

If objects are used, an object-oriented database management system may be required for
storage of plan representations, constraint representations, and planner models. ISX has
experience using Gemstone™ from ServioLogic and is investigating other alternatives.

5.6 Planner

ISX's ASTAIRE, which was developed in part with support provided by a NASA ARC Phase I
SBIR, provides the functionality specified for the MAX Planner. ASTAIRE uses object-based
representation, and its planning is based on models of the situation, problem status, and
resource status. Domain-dependent knowledge is represented in models for problem
recognition, problem solving, and resource capability.

©ISX Corporation

System Design: 13
Knowledge-Based Decision-Support System for SSF Engineering Managers

6.0 Detailed Specifications

This section provides detailed MAX object descriptions, focusing on attributes and
processing to be performed by the objects introduced in Section 4. Many of these descriptions
are based on descriptions provided in the requirements specification (see the reference in
Section 2). Some have been revised extensively; others have been modified only slightly.
All are included for completeness. As design continues in a subsequent phase, these
specifications will be extended and elaborated.

6.1 User Interface Specification

Object Name: User-Interface

Description: System Infrastructure software that provides "usable” interfaces to plan
and constraint editors, representations of plan and constraint models,
and the Validator object. The User-Interface object also provides input
checking, a display manager, and maintenance of a User Model that
enables interpretation of user input and preparation by the display
manager of output meeting the user's information requirements.
Initial guidelines for design of the user interface are summarized
below:

e Provide users with appropriate models of the device. If a model is
not provided, users will make up their own, possibly inappropriate
models.

e Use affordances and constraints. Affordances suggest the range
of possibilities; constraints limit the number of possibilities.
Constraints can be physical, semantic, cultural, and logical.

e Use knowledge in the world, avoid knowledge in the head.
Knowledge in the world acts as its own reminder. Knowledge in
the head is efficient in some cases, and may be appropriate for the
"power user."

o Use natural mappings; avoid labels. Appropriate use of natural
mappings can minimize the use of labels. If the interface depends
on labels, it may be faulty.

e Use direct manipulation. Avoid typing.

¢ Use generic commands to reduce the number of commands.

* State of the system must always be displayed.

Attributes: Selection <type, location>
User-Input <type, completeness, consistency>
System-Input <type, completeness, consistency, level of abstraction>
Information-Requirements <type, level of abstraction>
User-Output <type, location, level-of-abstraction>

Processing: Check-Selection

o check selection arguments against selection attribute constraints

e if constraints not met, return <no match> to display-manager

« if display-manager receives a <no match>, it prepares and posts a
selection-failure message on the display

e if constraints are met, pass through selection to appropriate
receiver

Check-User-Input
e check input arguments against input attribute constraints
e if a violation occurs, return violation identity to display-

©ISX Corporation

System Design: 4
Knowledge-Based Decision-Support System for SSF Engineering Managers

manager
« check input arguments against expectation defined by user-model
e if a consistency violation occurs, return violation identity to
display-manager
« if display-manager receives a violation identity, it prepares and
posts an input-violation message on the display
e if constraints are met, update information requirements
e if information requirements are updated, pass input and
information requirements to appropriate receiver
Update-User-Model
e with user-input and expectation from user-model, define new
expectation
« send new expectation to user-model
Update-Information-Requirements
e with user-input and expectation from user-mode}, define type and
level of abstraction of information required
Prepare-Output
o check system-input against information requirements
e if a violation occurs, return system-input and information-
requirements to sender
« if no violation occurs, send system-input to display-manager
« if display-manager receives system-input, it prepares and posts
information on the display

6.2 Plan Editor Specification

Object Name: Plan-Editor
Description: System Infrastructure software that provides capabilities supporting
viewing, selecting, and editing plan elements. This is a high-level,
graphical environment for plan definition and modification.
Attributes: Selection <type>
User-Input <type>
System-Input <element-type, completeness, consistency, level of
abstraction>
Add-Element <element-type>
Change-Element <element-type, change-type>
Delete-Element <element-type>
Plan-Builder-Output <type>
Processing: Check-Selection
e check selection arguments against selection attribute constraints
« if constraints not met, return <no match> to User-Interface object
« if constraints are met, continue to check-system-input
Check-System-Input
o check system-input arguments against system-input attribute
constraints '
e if a violation occurs, return violation identity to sender
Add-Plan-Element
e check user-input and system-input arguments against add-
element attribute constraints
« if a violation occurs, return violation identity to sender
« if no violation occurs, send input to Plan-Builder object
« send process completion message to requester
Change-Plan-Element

©ISX Corporation

System Design: 15

Knowledge-Based Decision-Support System for SSF Engineering Managers

e check user-input and system-input arguments against change-
element attribute constraints

« if a violation occurs, return violation identity to sender

« if no violation occurs, send input to Plan-Builder object

« send process completion message to requester

Delete-Plan-Element

e check user-input and system-input arguments against delete-
element attribute constraints

« if a violation occurs, return violation identity to sender

« if no violation occurs, send input to Plan-Builder object

* send process completion message to requester

6.3 Constraint Editor Specification
Object Name: Constraint-Editor
Description: System Infrastructure software that provides capabilities supporting
viewing, selecting, and editing constraint models.
Attributes: Selection <type>

User-Input <type>

System-Input <type, completeness, consistency, level of abstraction>
Add-Constraint <constraint-type>

Change-Constraint <constraint-type>

Delete-Constraint <constraint-type>
Constraint-Model-Builder-Output <type>

Processing: Check-Selection
o check selection arguments against selection attribute constraints

e if selection attribute constraints not met, return <no match> to
User-Interface object
« if constraints are met, continue to check-system-input
Check-System-Input
e check system-input arguments against system-input attribute
constraints
e if a system-input attribute constraint violation occurs, return
violation identity to sender
« if no violation occurs, pass input to appropriate procedure
Add-Constraint
e check user-input and system-input arguments against add-
constraint attribute constraints
« if a violation occurs, return violation identity to sender
« if no violation occurs, send input to Plan Builder
~* send process completion message to requester
Change-Constraint
e check user-input and system-input arguments against change-
constraint attribute constraints
o if a violation occurs, return violation identity to sender
« if no violation occurs, send input to Constraint-Model-Builder
» send process completion message to requester

Delete-Constraint
o check user-input and system-input arguments against delete-
constraint attribute constraints
« if a violation occurs, return violation identity to sender
« if no violation occurs, send input to Constraint-Model-Builder
» send process completion message to requester

©ISX Corporation

System Design:

16

Knowledge-Based Decision-Support System for SSF Engineering Managers

6.4 Plan Builder Specification

Object Name:
Description:

Attributes:

Processing:

Plan-Builder
System Infrastructure software that, given high-level Plan-Editor
requests to add, change, or delete plan elements (assembly elements,
cargo elements, cargo bay placement, flights, and launch manifests),
generates the implementation of requests in the Plan-Representation.
Implementation of plan element edits includes generation of low-level
effects from high-level edits and propagation of effects throughout the
affected Plan-Representation.
Selection <type>
System-Input <type, completeness, consistency, level of abstraction>
Add-Element-Problem <element-type, problem-type, criticality>
Change-Element-Problem <element-type, change-type, problem-type,
criticality>
Delete-Element-Problem <element-type, problem-type, criticality>
Check-Selection
« check selection arguments against selection attribute constraints
e if constraints not met, return <no match> to Plan-Editor object
« if constraints are met, continue to check-system-input
Check-System-Input
e check system-input arguments against system-input attribute
constraints
e if a violation occurs, return violation identity to sender
e if no violation occurs, pass input to appropriate procedure
Add-Plan-Element
« identify affected Plan-Representation context
¢ identify proposed tasks for implementation of plan element
addition
« identity problems created by proposed tasks for implementation of
plan element addition (primary problems)
« identify secondary tasks created by proposed tasks for
implementation of plan element addition (propagation tasks)
* identity problems created by secondary tasks for implementation
of plan element addition (secondary problems)
e check primary and secondary problems against add-element-
problem attribute constraints
e if a violation occurs, return violation identity and criticality to
sender
e if no violation occurs, implement all tasks
e if sender confirms change, implement all tasks even with
violations
« send process completion message to requester
Change-Plan-Element
¢ identify affected Plan-Representation context
e identify proposed tasks for implementation of plan element
change
« identity problems created by proposed tasks for implementation of
plan element change (primary problems)
e identify secondary tasks created by proposed tasks for
implementation of plan element change (propagation tasks)
« identity problems created by secondary tasks for implementation
of plan element change (secondary problems)

©ISX Corporation

System Design: 17

Knowledge-Based Decision-Support System for S8SF Engineering Managers

e check primary and secondary problems against change-element-
problem attribute constraints

e if a violation occurs, return violation identity and criticality to
sender

e if no violation occurs, implement all tasks

e if sender confirms change, implement all tasks even with
violations

« send process completion message to requester

Delete-Plan-Element

« identify affected Plan-Representation context

« identify proposed tasks for implementation of plan element
deletion

* identity problems created by proposed tasks for implementation of
plan element deletion (primary problems)

e identify secondary tasks created by proposed tasks for
implementation of plan element deletion (propagation tasks)

« identity problems created by secondary tasks for implementation
of plan element deletion (secondary problems)

e check primary and secondary problems against dglete-element-
problem attribute constraints

« if a violation occurs, return violation identity and criticality to
sender

e if no violation occurs, implement all tasks

e if a violation occurs and sender confirms deletion, implement all
tasks

e identity problems created by implemented tasks (primary and
secondary problems)

e check primary and secondary problems against delete-element-
problem attribute constraints

e if a violation occurs, return violation identity and criticality to
sender

* send process completion message to requester

6.5 Constraint Model Builder Specification

Object Name: Constraint-Model-Builder

Description: System Infrastructure software that, given high-level Constraint-Editor
requests to add, change, or delete constraints, generates the
implementation of requests in the Constraint-Model. Implementation
of constraint edits includes generation of low-level effects from high-
level edits and propagation of effects throughout the affected Constraint-
Model.

Attributes: Selection <type>
System-Input <type, completeness, consistency, level of abstraction>
Add-Constraint-Problem <constraint-type, problem-type, criticality>
Change-Constraint-Problem <constraint-type, problem-type,
criticality>
Delete-Constraint-Problem <constraint-type, problem-type, criticality>
Processing: Check-Selection
« check selection arguments against selection attribute constraints
e if constraints not met, return <no match> to sender
e if constraints are met, continue to check-system-input
Check-System-Input

©ISX Corporation

System Design: 18
Knowledge-Based Decision-Support System for SSF Engineering Managers

o check system-input arguments against system-input attribute
constraints
¢ if a violation occurs, return violation identity to sender
« if no violation occurs, pass input to appropriate procedure
Add-Constraint
« identify affected Constraint-Model context
« identify proposed tasks for implementation of constraint addition
« identity problems created by proposed tasks for implementation of
constraint addition (primary problems)
« identify secondary tasks created by proposed tasks for
implementation of constraint addition (propagation tasks)
* identity problems created by secondary tasks for implementation
of constraint addition (secondary problems)
e check primary and secondary problems against add-constraint-
problem attribute constraints
e if a violation occurs, return violation identity and criticality to
sender
e if no violation occurs, implement all tasks
« if a violation occurs and sender confirms addition, implement all
tasks
* identity problems created by implemented tasks (primary and
secondary problems)
o check primary and secondary problems against add-element-
problem attribute constraints
« if a violation occurs, return violation identity and criticality to
sender
* send process completion message to requester
Change-Constraint
o identify affected Constraint-Model context
* identify proposed tasks for implementation of constraint change
« identity problems created by proposed tasks for implementation of
constraint change (primary problems)
o identify secondary tasks created by proposed tasks for
implementation of constraint change (propagation tasks)
« identity problems created by secondary tasks for implementation
of constraint change (secondary problems)
o check primary and secondary problems against change-element-
problem attribute constraints
e if a violation occurs, return violation identity and criticality to
sender
« if no violation occurs, implement all tasks
e if a violation occurs and sender confirms change, implement all
tasks
« identity problems created by implemented tasks (primary and
secondary problems) .
e check primary and secondary problems against change-element-
problem attribute constraints
« if a violation occurs, return violation identity and criticality to
sender
« send process completion message to requester
Delete-Constraint '
« identify affected Constraint-Model context
« identify proposed tasks for implementation of constraint deletion

©ISX Corporation

System Design: 19
Knowledge-Based Decision-Support System for SSF Engineering Managers

« identity problems created by proposed tasks for implementation of
constraint deletion (primary problems)

+ identify secondary tasks created by proposed tasks for
implementation of constraint deletion (propagation tasks)

« identity problems created by secondary tasks for implementation
of constraint deletion (secondary problems)

e check primary and secondary problems against delete-element-
problem attribute constraints

e if a violation occurs, return violation identity and criticality to
sender

e if no violation occurs, implement all tasks

e if a violation occurs and sender confirms deletion, implement all
tasks

» identity problems created by implemented tasks (primary and
secondary problems)

e check primary and secondary problems against delete-element-
problem attribute constraints

« if a violation occurs, return violation identity and criticality to
sender)

e send process completion message to requester

6.6 Plan Representation Specification
Object Name: Plan-Representation
Description: System Infrastructure software that stores plan representations as a

network of interrelated objects. Plan-Representation also stores the
results of evaluations of plan representations produced by the Validator
and provides information to the User-Interface, the Plan-Builder, and
Value-Calculators. Changes in plan representations are accomplished
through messages sent by the Plan-Builder, the Intra-Flight-Planner,
or the Inter-Flight-Planner.

Attributes: System-Input <type, completeness, information requirements>
Add-Element-Problem <element-type, problem-type, criticality>
Change-Element-Problem <element-type, change-type, problem-type,
criticality>
Delete-Element-Problem <type, problem-type, criticality>
Value-Calculation <type, plan-representation-identifier>

Processing: Check-System-Input

e check system-input arguments against system-input attribute
constraints
« if a violation occurs, return violation identity to sender
« if no violation occurs, pass input to appropriate procedure
Add-Plan-Element
« implement tasks for plan element addition
e identity problems created by implementation of plan element

addition

e check problems against add-element-problem attribute
constraints

« if a violation occurs, return violation identity and criticality to
sender

e send process completion message to requester
Change-Plan-Element
e implement tasks for plan element change

©ISX Corporation

System Design: 2
Knowledge-Based Decision-Support System for SSF Engineering Managers

¢ identity problems created by implementation of plan element
change

e check problems against change-element-problem attribute
constraints

e if a violation occurs, return violation identity and criticality to
sender

e send process completion message to requester

Delete-Plan-Element
¢ implement tasks for plan element deletion
* identity problems created by implementation of plan element

deletion

e check problems against delete-element-problem attribute
constraints

o if a violation occurs, return violation identity and criticality to
sender

* send process completion message to requester
Request-Value-Calculation
e form value-calculation request using value-calculation attribute
e send value-calculation request to Value-Calculation
Record-Validation ‘
e associate validation data received from Validation with
appropriate plan element
Information-Response
e identify information meeting system-input information
requirements
* get requested information
¢ send information to requester

6.7 Constraint Model Specification

Object Name: Constraint-Models

Description: System Infrastructure software that stores constraints as a network of
interrelated objects. Constraint-Models also provides information to
the User-Interface, the Constraint-Model-Builder, and the Validator.
Changes in constraint models are accomplished through messages sent
by the Constraint-Model-Builder.

Attributes: System-Input <type, completeness, information requirements>
Add-Constraint-Problem <constraint-type, problem-type, criticality>
Change-Constraint-Problem <constraint-type, change-type, problem-
type, criticality>
Delete-Constraint-Problem <type, problem-type, criticality>

Processing: Check-System-Input

o check system-input arguments against system-input attribute
constraints
« if a violation occurs, return violation identity to sender
« if no violation occurs, pass input to appropriate procedure
Add-Constraint
e implement tasks for constraint addition
e identity problems created by implementation of constraint

addition

e check problems against add-element-problem attribute
constraints

e if a violation occurs, return violation identity and criticality to
sender

©ISX Corporation

System Design: 21
Knowledge-Based Decision-Support System for SSF Engineering Managers

« send process completion message to requester
Change-Constraint
o implement tasks for constraint change
» identity problems created by implementation of constraint change
¢ check problems against change-element-problem attribute
constraints
e if a violation occurs, return violation identity and criticality to
sender
* send process completion message to requester
Delete-Constraint
* implement tasks for constraint deletion
e identity problems created by implementation of constraint

deletion

e check problems against delete-element-problem attribute
constraints

e if a violation occurs, return violation identity and criticality to
sender

« send process completion message to requester
Information-Response
e identify information meeting system-input’ information
requirements
» get requested information
¢ send information to requester

6.8 Value Calculator Specification

Object Name: Value-Calculator

Description: Planner software that identifies and computes performance measures
appropriate to the plan representation information sent by the Plan-
Representation object. Measures are domain-dependent measures of
effectiveness and values of constrained variables. This object provides
information to the Validator.

Attributes: System-Input <type, completeness>
Report-Form <type, parameters, plan-representation>
Processing: Check-System-Input
e check system-input arguments against system-input attribute
constraints

¢ if a violation occurs, return violation identity to sender
e if no violation occurs, pass input to appropriate procedure
Identify-Measures
e select measures appropriate for plan representation contained in
value-calculation-request received from Plan-Representations
Get-Plan-Representation
¢ request plan data from Plan-Representation
Compute-Measures
e compute identified measures on plan data supplied by Plan-
Representation
Report-Measures
« form report using Report-Form attributes
e send computed performance measures with plan representation
identifier to Validator

©ISX Corporation

System Design:
Knowledge-Based Decision-Support System for SSF Engineering Managers

6.9 Validator Sp_eciﬁcation

Object Name: Validator

Description: Planner software that compares values of performance measures
provided by Value-Calculator to standards defined by Constraint-
Models and determines whether measures violate constraints using
knowledge provided by Problem-Recognition-Models. Provides
information to the User-Interface, Plan-Representations, and the

Planning Engine.

Attributes: System-Input <type, completeness>
Report-Form <type, parameters, plan-representation>
Processing: Check-System-Input
e check system-input arguments against system-input attribute
constraints

« if a violation occurs, return violation identity to sender
« if no violation occurs, pass input to appropriate procedure
Get-Constraints
« identify constraints relevant to performance measures provided
by the Value-Calculator
* get identified constraints
Validate
e compare performance measures with standards defined by
constraints
* send comparisons to Problem-Recognition-Models for evaluation
Report-Results
* develop report using response from Problem-Recognition-Models
and Report-Form attributes
« send report with plan representation identifier to User-Interface,
Plan-Representations, Intra-Flight-Planner, and Inter-Flight-
Planner.

6.10 Problem Recognition Model Specification

Object Name: Problem-Recognition-Models

Description: Planner software that is a knowledge-based server for the Validator.
The object evaluates comparisons of performance measures and
standards defined by constraints provided by the Validator to determine
whether measures violate constraints. It provides results of the
evaluation to the Validator.

Attributes: System-Input <type, completeness>
Processing: Check-System-Input
e check system-input arguments against system-input attribute
constraints

« if a violation occurs, return violation identity to sender
« if no violation occurs, pass input to appropriate procedure

Identify-Knowledge
e identify knowledge relevant to evaluating measure-constraint

comparisons provided by the Validator

Evaluate
e execute evaluation by applying identified knowledge to measure-

constraint comparisons
« send results to the Validator

©ISX Corporation

System Design: 23
Knowledge-Based Decision-Support System for SSF Engineering Managers

6.11 Problem Solving Model Specification

Object Name: Problem-Solving-Models

Description: Planner software that is a knowledge-based server for the Planning-
Engine. Problem-Solving-Models contains knowledge about how to
solve plan problems in the domain. The object uses information in the
solution-request provided by the Planning-Engine to identify and
prioritize potential solutions. It provides results to the Planning-

Engine.
Attributes: System-Input <type, completeness>
Processing: Check-System-Input
e check system-input arguments against system-input attribute
constraints

¢ if a violation occurs, return violation identity to sender
« if no violation occurs, pass input to appropriate procedure
Identify-Knowledge
¢ identify knowledge relevant to identifying and prioritizing
solutions
e execute identification and prioritization
¢ send results to requester

6.12 Resource Capability Model Specification

Object Name: Resource-Capability-Models

Description: Planner software that is a knowledge-based server for the Planning-
Engine. Resource-Capability-Models contains knowledge about the
capabilities of resources in the domain. The object uses information in
the solution-request provided by the Planning-Engine to identify and
prioritize resources applicable to a problem solution. It provides results
to the Planning-Engine.

Attributes: System-Input <type, completeness>
Processing: Check-System-Input
e check system-input arguments against system-input attribute
constraints

« if a violation occurs, return violation identity to sender
* if no violation occurs, pass input to appropriate procedure
Identify-Knowledge
« identify knowledge relevant to identifying and prioritizing
resources
* execute identification and prioritization
+ send results to requester

6.13 Planning Engine Specification

Object Name: Planning-Engine '

Description: Planner software that, given constraint violation problems identified
by the Validator, problem solutions suggested by Problem-Solving-
Models, and prioritized resources provided by Resource-Capability-
Models, selects and implements solutions. Solutions are implemented
by developing and executing task plans producing required changes to
the Plan-Representation. Has the following parts: FOA Trees,
Situation Models, Problem Models, and Resource Models. Provides
information to the User-Interface and Plan-Representations.

©ISX Corporation

System Design:

Knowledge-Based Decision-Support System for SSF Engineering Managers

Attributes:

Processing:

Selection <type>
System-Input <type, completeness, consistency, level of abstraction>
Solution-Request <problem-type>
Resource-Request <problem-type>
Add-Element-Problem <element-type, problem-type, criticality>
Change-Element-Problem <element-type, change-type, problem-type,
criticality>
Delete-Element-Problem <element-type, problem-type, criticality>
Check-System-Input
e check system-input arguments against system-input attribute
constraints
e if a violation occurs, return violation identity to sender
« if no violation occurs, pass input to appropriate procedure
Update-Situation-Model
« using Validator input, update the Situation-Model
Update-Problem-Model
e using Validator input, identify problem to be solved
e define a Focus of Attention (FOA) object for the problem to be
solved
« define goal objects for the FOA object
o write FOA object into Problem-Model
Update-Resource-Model
* given selected resources, define resource objects for goal object(s)
o write the FOA object into Resource-Model
Get-Solutions
« prepare solution-request using solution-request attributes
e send solution-request to Problem-Solving-Models
Select-Solution
e evaluate solutions provided by Problem-Solving-Models to
identify a recommended solution
¢ send recommendation to User-Interface
o if user confirms change, implement all tasks
e if user does not confirm change, select and recommend another
solution
« if no solution can be selected, stop
Get-Resources
e prepare resource-request using resource-request attributes
¢ send resource-request to Resource-Capability-Models
Select-Resources
e evaluate resources provided by Resource-Capability-Models to
identify a recommended resources for solution
« send recommendation to User-Interface
e if user confirms change, implement all tasks
¢ if user does not confirm change, select and recommend another
solution
« if no solution can be selected, stop
Implement-Addition-Tasks
« identify affected Plan-Representation context
* identify proposed tasks for implementation of plan element
addition
« identity problems created by proposed tasks for implementation of
plan element addition (primary problems)
e identify secondary tasks created by proposed tasks for

‘

©ISX Corporation

System Design:

Knowledge-Based Decision-Support System for SSF Engineering Managers

implementation of plan element addition (propagation tasks)
identity problems created by secondary tasks for implementation
of plan element addition (secondary problems)

check primary and secondary problems against add-element-
problem attribute constraints

if a violation occurs, return violation identity and criticality to
sender

if no violation occurs, implement all tasks

if sender confirms change, implement all tasks even with
violations

send process completion message to requester

Implement-Change-Tasks

identify affected Plan-Representation context

identify proposed tasks for implementation of plan element
change

identity problems created by proposed tasks for implementation of
plan element change (primary problems)

identify secondary tasks created by proposed tasks for
implementation of plan element change (propagation tasks)
identity problems created by secondary tasks for implementation
of plan element change (secondary problems)

check primary and secondary problems against change-element-
problem attribute constraints

if a violation occurs, return violation identity and criticality to
sender

if no violation occurs, implement all tasks

if sender confirms change, implement all tasks even with
violations

send process completion message to requester

Implement-Delete-Tasks

identify affected Plan-Representation context

identify proposed tasks for implementation of plan element
deletion

identity problems created by proposed tasks for implementation of
plan element deletion (primary problems)

identify secondary tasks created by proposed tasks for
implementation of plan element deletion (propagation tasks)
identity problems created by secondary tasks for implementation
of plan element deletion (secondary problems)

check primary and secondary problems against delete-element-
problem attribute constraints

if a violation occurs, return violation identity and criticality to
sender

if no violation occurs, implement all tasks

if a violation occurs and sender confirms deletion, implement all
tasks :

identity problems created by implemented tasks (primary and
secondary problems)

check primary and secondary problems against delete-element-
problem attribute constraints

if a violation occurs, return violation identity and criticality to
sender

send process completion message to requester

©ISX Corporation

System Design: 2%
Knowledge-Based Decision-Support System for SSF Engineering Managers

6.14 Development Tools

This section presents brief descriptions of required MAX Development Tools. Because many
MAX Development Tools will be provided by commercial development environment, the
tools have not been defined in as much detail as other MAX objects. Detailed specifications
will be developed for tools that cannot be obtained commercially.

Object Name: Text Editor

Description: A full-featured text editor, integrated with all other tools, that will allow
users to edit text and programs without leaving the development
environment.

Name: Structure Editor

Description: A graphic structure editor, integrated with all other tools, that will allow
users to edit plan and constraint representations by moving and
changing properties of icons.

Name: User Interface Tool

Description: A tool or integrated set of tools for designing and developing user
interfaces. This should include high-level support for graphics, fonts,
windows, menus, and mice; user-defined stream/window managers;
functions and macros for high-level, machine-independent graphics
and user interface programming.

Name: Bitmap Editor

Description: A bitmap editor, integrated with all other tools, that will allow mouse-
driven editing and creation of pictures, cursors, brushes, and textures.

Name: Inspector

Description: A browser tool for dynamic examination and modification of data
structures.

Name: Debugger

Description: An interactive debugger supporting full access to runtime stack and
environment. The Debugger should be called when the flow of
execution is interrupted, and it should allow inspection and
modification of values stored on the execution stack. All programming
tools should be available within the Debugger execution context.

Name: Stepper

Description: The Stepper allows single-step debugging of code. Features include
single step, skipping of subexpressions, aborting, and entering the
Debugger.

Name: Tracing, Breakpointing, & Profiling

Description: Tracing a function causes diagnostic information to be printed every
time the function is called or returns. Setting a breakpoint on a
function gives the option of entering the Debugger every time that
function is called or returns. Profiling a function accumulates timing
information on the function.

Name: Pretty Printer

Description: The Pretty Printer produces formatted output of data structures and

©ISX Corporation

System Design:

Knowledge-Based Decision-Support System for SSF Engineering Managers

Name:
Description:

source code. Features include user-extensible print macros to control
printing and support for multi-font and variable-width characters.

Object Library
A collection of reusable, editable System Infrastructure and Planner

objects supporting the revision, maintenance, and extension of existing
systems and the development of new systems.

©ISX Corporation

i nmurmwdr‘"”

hihn m«n««“«u o

i

e

it w,»mmm

o i
TR t S e

e
e
i i

e e

o
i

-=-m‘4m b
e
s
S

T
it

i e — -

5 i
i
i

L

sl
T

: v:’:v'm’;::::mmw i

Assembly Sequence Planning
Personal Analysis Assistant

User's Reference Guide
Version 1.0b

Prepared by
ISX Corporation
501 Marin Street, Suite 214
Thousand Oaks, CA 91360

February 14, 1991

Funded By

NASA Ames Research Center
NASA Research Announcement Contract NAS2-13296

ASP User’'s Reference Guide i

Table Of Contents
Section Page #
Table Of CONEENES..c.iiiieuirueenriitiiiiiarterterarottttitrieritaatassestestetastsanrasaasces i
NOTES TO THE USER.tiiitiiciatiitiiieanraeeietaieatoatentaessattsstisnosansonnencss ii
1.0 OVEIVIEW . nvveneeeneeaneiaseasssnsaneastonasansonsssessionsssssntonesassossesssonnssnsasnasss 1
2.0 System Requirements.......cccccooiiiiiiiiiiiiiiiiiiiiannes 1
2.1 Hardware ReqUirementscooevevereniieiiiininniaaiieieiniiianaincreneees 1
2.2 Software Requirementscvieeinieeeiiiiiiiiiiieiieiciiiiiciaareoncrnrenes 1
3.0 System Installationccoeeeveiieiininiiiiiari e 1
3.1 Disk CONteNES...i.oeuiiiiniiniiiiiiiieiarre ittt st e 1
D Ty T LT Te) W R CLRCTTTTRRIL AT RRERLEELE 2
4.0 PAA WINAOW - enneinnrtenreaateraeerantarassssssaaanaassaissssnmassesoescisssssanattoseciss 3
4.1 Window Operationscouiuteiriireneneiiiniiiatiiaetentiiiatittatiueatenconees 3
4.1.1 MISSIOMIS. .o evreeeruresierereeeseaceesmsiossesssssasosssessssoassassssssssasarasastsrscs 3
4.1.2 SCrolliNE...ceuiiuienieiiiiiiiieeren ettt riresren sttt st s e 4
4.1.3 SCBHIME ettt 4
4.2 Menu COMIMNANGASuvuneennrenerenntoaseoansranseassssonsesnmasrenooserossusasntonss 5
4.2.1 TFile MeNU..cciiiniieieenaereeaeaeniinieinarasasorcesatomstsoraaonossensstmassassntanes 5
4.2.2 Elements MENU....c.cuvuveeinneireaeancaseseassansasansaassssssssessenns ereeerenas 6
4.2.3 Reports MenU......oiiiiiiiriiiiiiieniiiiieiirsaree sttt tnaasneseoessanenes 7
5.0 Assembly Element Dialog......ccoooooniiiimimiiiiiiiiieiiinenieeees 8
6.0 Exceptions DIialogoevuieiuieiriniraierciiiiiai ittt e 9
7.0 Milestone DIalogcueeueeerntiiiuiiiaranrieetetiiraratansatusttit et tanenrties 10
8.0 Open Mission Dillog......ooiiiiiiiiiiniiiiiii st 1
LR T I D2 L - L ERRRERLILEELTRLLEL A 12
10.0 Equipment Dialog........coouiniiiiiiiiiiiiiiiii et 14
11.0 Cargo Assembly Dialogcccovuieninniiiniiiiiiiiiiietiiii ettt 15
12.0 Cargo Bay Dialog......ccooooioiiioiiiiininiiine it 16
13.0 Preferences Dialog......coocoiieiiiiiiiiimmiiiiiiiiiiri e saaaaeoes 18
Appendix A - Cargo Bay Editor.......occciiiiicenien. -1
Appendix B - Trunnion Data.........c.oeeiiiiuimiiiiiiiiiiiiiiaenisentaeees B-1
Appendix C - Known Bugs........ooiuiiiiiiiniiiiiiiii it C-1
Y, U T RRE LR LEREE I

Copyright © 1991, ISX Corporation v1.0b

ASP User’s Reference Guide

1)

(2)

3)

4)

(5)

Copyright © 1991, ISX Corporation

ii

NOTES TO THE USER

It is assumed that the user is familiar with the Apple Macintosh™ operating
system and general style of application operation and behavior.

The use of bold typeface is merely intended to convey special emphasis to the
reader and is used throughout this document.

To "mouse” on an object is to place the cursor over the object and depress the
mouse button.

“Double-clicking” on an object is to place the cursor over the object and depress
the mouse button twice.

When editing a data field it is necessary to "tab", that is press the tab key, out
of the field to actually change the value of the data field.

v1.0b

ASP User’s Reference Guide 1

1.0 Overview

The Personal Analysis Assistant (PAA) application is designed to automate the tasks of assembly
sequence planning for construction of Space Station Freedom (SSF). These tasks include mission
launch scheduling, SSF assembly element mission allocation, Space Transportation System
(STS) cargo bay loading, and SSF program milestone creation and tracking.

Hardware and software system requirements are established in Section 2.0. Section 3.0 explains
system installation. The top level PAA window is detailed in Section 4.0. Sections 5.0 through 13.0
cover the major PAA dialogs. The proposed Cargo Bay Editor design is discussed in Appendix A,
Trunnion data format is presented in Appendix B, and known system bugs are listed in Appendix
C.

2.0 System Requirements

2.1 Hardware Requirements

The PAA application requires one of the Macintosh II™ family of computers, or a SE.30™, with 8
megabytes of memory and a 19" monitor (color optional). There should be a minimum of 7.5
megabytes of hard disk space available for installation and 5 megabytes for operation.

22 Software Requirements)
The PAA application requires Finder 6.1.5 and System 6.0.5, or later. The PAA also requires
Procyon Common Lisp v2.1.5d runtime application (provided).

NOTE: Due to the size of the PAA application it is recommended that it be run under the Finder
only, as opposed to the Multifinder.

3.0 System Installation

3.1 Disk Contents

The PAA comes on four (4) double-sided (800K) 3.5 inch diskettes. These disks contain a
compressed version of the PAA application and its associated files. The files have been
compressed with an application called DiskDoubler™. An extract-only application called
DDExpand™ has been provided to decompress the PAA files. Disks PAA.1, PAA.2, PAA.3, and
PAA4 contain the compressed files, which has intern been split to fit on the distribution diskettes.
Disk PAA.4 also contains DDExpand™. The five distribution files are shown in Figure 3.1.

R

PAAdd.l PAAdd2 PAAdd3 PAAdd4 DDExpand™

Figure 3.1 - Distribution Files

Copyright © 1991, ISX Corporation v1.0b

ASP User’'s Reference Guide 2

3.2 Installation Procedure

To install the PAA, copy the 5 files mentioned in Section 3.1 onto your hard disk. Double-click on
the PAA.dd.1 file. The DDExpand™ application will combine the 4 PAA.dd.# files into a file
named PAA.dd, removing the 4 PAA.dd.# files. Then it will expand the PAA.dd file into a folder
named PAA. This folder contains the PAA application and its associated files. Remove the
PAA.dd and the DDExpand™ files. Double-click on the PAA folder. Its contents are listed Figure

3.2.
T : = ‘
01101 i (?’L Y %
IMAGE . (@]

PAA Example Mission ProcyonCL 2.1.44 cLoS Overlays PAA Resource

Figure 3.2 - Installed PAA Files

To start the PAA application, double-click on the PAA icon.

Copyright © 1991, ISX Corporatioh v1.0b

ASP User’s Reference Guide 3

4.0 PAA Window

When the PAA application is started the top level window opens, see Figure 4.1. This window
displays available orbiters, along the left vertical axis, versus mission launch dates, along the
horizontal axes. The top horizontal axis shows the range of dates displayed in the mission display
field. The bottom horizontal axis shows the range of dates for the entire program. Missions are
displayed as rectangles in the mission display field and are labeled with the appropriate mission
name. The window resize box is located in the lower right corner. Window operations are
described in Section 4.1 and menu commands are discussed in Section 4.2.

& File Elements Reports
Personal Analysis Assistant - Example Mission

23 fipr 91
12:25795 41596 8:095.96 112596
[| T T T T T SO A | N [T T A | R T T I R A |

olr-102

ou-103

oU-10+4

ou-105

IIIIIIlIIII‘III|‘IIllIIIIII||IIIlII|

100G 1001105 120502 it

Figure 4.1 - Top Level PAA Window

4.1 Window Operations

4.1.1 Missions

Missions are displayed as rectangles and are positioned in the horizontal row of the orbiter which
will carry out the mission, and with their left edge in the column which aligns with the mission
launch date, to the nearest week. The Mission Dialog for a particular mission is opened by
mousing on the desired mission. The mission's Mission Dialog may also be opened from the Open
Mission Dialog, see Section 8.0.

Copyright © 1991, ISX Corporation v1.0b

ASP User's Reference Guide 4

4.1.2 Scrolling
The mission display field may be scrolled both horizontally and vertically, as required, by using

the scroll bars at the bottom and the right of the display field, respectively. Mousing in the scroll
bar, but to either side of the scroll rectangle, will cause the display field to scroll in that direction,
one year per click for the horizontal bar, and one orbiter at a time for the vertical one. Mousing in
the scroll buttons at the extreme ends of the bar will cause the display field to scroll all the way to the
display field end of the selected button.

4.1.3 Scaling
A unique feature of the PAA scroll bars is that they also enable the mission display field to be

scaled, as well as scrolled. To scale the display field move the cursor to the end of the scroll
rectangle nearest the desired scale direction, for example, over the << or the >> for the horizontal
bar. While holding down the Command key (3), press and hold the mouse button, and drag the
mouse in the desired direction. This will cause the scroll rectangle to lengthen, or shorten. A
number will appear in the scroll rectangle and change as the mouse is dragged. This number
represents the number of weeks, for the horizontal bar, which will be displayed in the mission
display field, the default is 52 weeks. Releasing the mouse button will cause the mission display
field to be redrawn to the indicated scale. The dates displayed at the upper edge of the display field
will change accordingly (Bug: There is a display bug which prevents the dates from displaying
correctly above 72 weeks).

Mousing on the button in the lower right of the field, at the intersection of the scroll bars, will cause
the mission display field to be scaled as to be fully displayed. To display a region of the display
field, move the mouse to the upper left corner of the desired region. While holding down the Control
key, press the mouse button and drag the mouse toward the lower right of the display field. A
rectangle will be drawn as the mouse is dragged. When the mouse button is released, the display
field will be scaled and redrawn to the region bounded by the rectangle.

Copyright © 1991, ISX Corporation v1.0b

ASP User’'s Reference Guide 5

4.2 Menu Commands
4.2.1 File Menu
O File
New... %N
Open... %0
Read...
Save %8S
Save As...
Preferences... 3P
Quit %Q

The File menu commands are described below:

New... ¥N
Create a new SSF program run. If the presently loaded run has not been saved the

user will be prompted to save.

Open... %0
Open an existing SSF program run. If the presently loaded run has not been saved

the user will be prompted to save.

Read...
Read a tab delimited run data file, typically an Excel™ spreadsheet . This

command merges the incoming data with the existing run.

Save %S$
Save the existing run to disk with the current name.

Save as...
Save the existing run to disk with a new name.

Preferences... ¥P
Open the Preferences Dialog, see Section 13.0.

Quit... 20
Exit the PAA application. If the presently loaded run has not been saved the user

will be prompted to save.

Copyright © 1991, ISX Corporation v1.0b

ASP User's Reference Guide

4.2.2 Elements Menu

O Elements
Assembly Elements... %A

Exceptions... ®E
Milestones...
Missions... ¥M
Trunnions...:

Cargo Bay...

The Elements menu commands are described below:

Assembly Elements... ¥A
Open the Assembly Element Dialog, see Section 5.0.

Exceptions... ¥E
Open the Exceptions Dialog, see Section 6.0.

Milestones...
Open the Milestone Dialog, see Section 7.0.

Missions... ¥M
Open the Open Mission Dialog, see Section 8.0.

Trunnions...

Read in new C language format trunnion data, see Appendix B.

Cargo Bay...
Display the Phase II Cargo Bay Editor, see Appendix A.

Copyright © 1991, ISX Corporation

v1.0b

ASP User's Reference Guide

4.2.3 Reports Menu

[0 Reports
Assembly Elements...
Cargo Elements...
Equipment...
Exceptions...

Mass and C6...
Milestones...
Missions...

The Reports menu commands are described below:

fissembly Elements...
Write a tab delimited file of all assembly element data.

Cargo Elements... .
Write a tab delimited file of all mission cargo element data.

Equipment...
Write a tab delimited file of all mission equipment data.

Exceptlions...
Write a tab delimited file of all exception data.

Mass and C6...

Write a tab delimited file of all mission mass and center of gravity data.

Milestones...
Write a tab delimited file of all program milestone data.

Missions...
Write a tab delimited file of all mission data.

Copyright © 1991, ISX Corporation

v1.0b

ASP User’'s Reference Guide ‘ 8

5.0 Assembly Element Dialog

The Assembly Element Dialog allows the user to view, create, edit, or delete SSF assembly
elements, see Figure 5.1. The dialog consists of the assembly element list, three action buttons,
New, Delete, and Done, and the assembly element data fields. Assembly elements are displayed
with their numbers, names, and mission affiliation.

Assembly Elements

1 SOLAR ARRAYS/BETA GIMBALS (MB-1)

5 INTEGRATED EQUIPMENT ASSEMBLY (MB-
13 ALPHA JOINT SUPPORT STRUCT. (MB-1)
32 TRUSS BAY (MB-1)

40 UTILITIES (MB-1)

41 UTILITIES (MB-1)

52 ALPHA TRANSITION UTILITIES (MB-1)
68 TRUSS BAY (MB-1)

82 MOBILE TRANSPORTER (MB-1)
| o ppecine nOMPERS (S) (MB-1)

Number:|5 Name: | INTEGRATED EQUIPMENT ASSEMBLY

1)

(New)

(Belete)

M r
@ Manager's Reserve Mission: MB-1

Mass(ibs)
Element:| 12642.00 Milestone: NIL
Fluids & Gases:|0.00
Esk:[0.00 Comment:
NIL
0AF:| 1100.00

Total: 14374.09

Figure 5.1 - Assembly Element Dialog

To create a new assembly element, mouse on the New button. An assembly element named
=untitled” will be created and added to the assembly element list. To edit an assembly element,
select it from the element list. The assembly element data fields will be populated with element's
data_ Select the desired values to change, tabing between fields. Note that an assembly element
must have a unique number, except for elements with the number zero (used for elements which
currently have no valid number). In order to delete an element, it cannot belong to a mission. An
element can only be removed from a mission in the Cargo Assembly Dialog, see Section 11.0. To
delete an element that does not belong to a mission, select it and mouse on the Delete button.

Copyright © 1991, ISX Corporation v1i.0b

ASP User’s Reference Guide 9

6.0 Exceptions Dialog

The Exceptions Dialog displays a listing of all program exceptions, see Figure 6.1. This dialog is
intended for information only and does not affect any data in the current run. The dialog shown
in the figure lists a single Mass Margin exception of 503.69 lbs against the mission named "MB-
1" (NOTE: The present version of the PAA application also tracks both Forward and Aft Center of
Gravity exceptions). When viewing of the dialog is completed, mouse on the Done button or press

the carriage return key.

Exceptions
Mass Margin: -503.69 (MB-1)

(2

[_poneJ

FigureG.I-ExceptiomDialog

The Exceptions Dialog is also displayed when the Mission Dialog is opened and if the selected
mission has exceptions against it.

Copyright © 1991, ISX Corporation v1.0b

ASP User’'s Reference Guide

7.0 Milestone Dialog

The Milestone Dialog allows the user to view, create, edit, or delete program milestones, see Figure
7.1. The dialog consists of the available assembly elements list (those elements not already
associated with a milestone), the milestones list, the milestone assembly elements list, the add and
remove assembly element icons, the add and delete milestone buttons, the milestone name field,

the milestone date popup menus, and the Done button.

10

Available Assembly Elements Milestones Milestone Assembly Elements

0 MB-1 UTILITY TRAYS (2) (MB-1){i:
1 SOLAR ARRAYS/BETA GIMBALS
S INTEGRATED EQUIPMENT ASSEM
32 TRUSS BAY (MB-1)

41 UTILITIES (MB-1)

52 ALPHA TRANSITION UTILITIES
68 TRUSS BAY (MB-1)

82 MOBILE TRANSPORTER (MB-1)
1638 CETA DEVICE (EUR)/ESE (MB
171 APS_(MB-1)

P>
K

<al

TEST1 (1/ 13 ALPHA JOINT SUPPORT STRUCT.
157 SOLAR ARRAYS/BETA GIMBALS

169 ASSEMBLY WORK PLATFORM

)

[Done | Name: [[[EE pate:[Jun | [1] [1997]

Figure 7.1 - Milestone Dialog

To create a milestone mouse on the add milestone button, the square "+" button under the milestone
List. A milestone named "untitled" will be displayed on the milestone list. To edit the milestones
name or date, select it from the milestone list, its name and date will be displayed in the milestone
date field and popups. Also any assembly elements which belong to this milestone will be
displayed in the milestone assembly list. To add an assembly element to a milestone, select both
the element and the milestone. Then mouse on the add assembly element icon, the right pointing
double arrowhead. The element will be removed from the available element list and added to the
milestone element list. To remove an element, select both the milestone and the element and
mouse on the left pointing double arrowhead. To remove a milestone, select it and mouse on the
remove milestone button, the square "-" button. Note that a milestone must be empty of assembly

elements before it can be deleted. When finished, mouse on the Done button.

Copyright © 1991, ISX Corporation

v1.0b

ASP User’s Reference Guide 11

8.0 Open Mission Dialog

The Open Mission Dialog allows the user to open or delete an existing mission, or create a new
one, see Figure 8.1. The dialog consists of the mission list, and the Open, New, Delete, and Done

buttons.

DEFAULT]
MB-1 (open...)
[New...)
[betete]
i
O .
Select a Mission...

Figure 8.1 - Open Mission Dialog

To open an existing mission, select the mission and mouse on the Open button. This will cause
the dialog to close and the Mission Dialog to open, see Section 9.0. To create a new mission,
mouse on the New button. A dialog will be displayed to name the new mission. On acceptance
of the name the Mission Dialog will be opened the to new mission. Note that the attributes of
mission named "Default” are inherited by any newly created mission. Only missions which
have no assembly elements may be deleted. To remove a mission's assembly elements go the
Cargo Assembly Dialog, see Section 11.0. To delete a mission which has no assembly
elements, select the mission and mouse on the Delete button.

Copyright © 1991, ISX Corporation v1.0b -

ASP User’s Reference Guide 2

9.0 Mission Dialog

The Mission Dialog allows the user to edit an existing mission, see Figure 9.1. The dialog consists
of various mission attribute fields and popups, mass and center of gravity data summary displays,
Equipment, Contents, Cargo Bay, Print, Save, and Cancel buttons.

Date: | Feb 1 1995

Name: Comment:|NIL

Orbiter:| 0OU-103

Mission Altitude:|{220.0 nmi
Magimum NSTS Lift Capability:{40000.0 Ibs

Mass Summary: Total Mass(ibs) M/R(1bs) Edit
——————————————————————— Equipment-—----—-----=-=-=-ToTTT
Mass Only: 1875.00 0.00 -
Equipment...
Mass & C6: 4040.00 96.99 rq P J
————————————————————————— Cargo--—--——---——-—-"-""-T"-"""="
Assembly Elements: 26786.00 1339.29
Fluids & Gases: 0.00 0.00
FSE Mass: 1968.00 939 Lcontents..
OAF Mass: 3300.00 n/a
Totals: 37969.00 1534.69

Total Payload Mass: 39503.69 Ibs Mass Margin: 496.30 Ibs

C6 Summary: CG(inches) Margin(inches) Edit
Forward: 1012.42 15.27
aft: 1197.38 l69.67 (cerge Bay...]

Total C6G Mass: 36093.99 Ibs CG Location: 1027.70 inches

[Print) Soue |

Figure 9.1 - Mission Dialog

Copyright © 1991, ISX Corporation v1.0b

ASP User’'s Reference Guide 13

Mission attributes may be changed as described in the preceding sections, Note that the mission
name must be unique. To edit the mission’s equipment elements mouse on the Equipment button,
see Section 10.0. To add or remove assembly elements from the mission, create or delete cargo
elements, or populate existing cargo elements, mouse on the Contents button, see Section 11.0. To
configure existing cargo elements or load the cargo bay, mouse on the Cargo Bay button. To print a
tab delimited mission report, mouse on the Print button. To save the mission in the current run,
mouse on the Save button. To cancel the edit session and return to the PAA top level window, mouse
on the Cancel button or press the carriage return key.

Copyright © 1991, ISX Corporation v1.0b

ASP User's Reference Guide : i«

10.0 Equipment Dialog

The Equipment Dialog allows the user to view, create, edit, or delete mission equipment, see
Figure 10.1. The dialog consists of the equipment element list, three action buttons, New, Delete,
and Done, and the equipment element data fields.

Equipment
2 CREW O
3 EMU'S
4TH CRYO0 TANK
FTS / MSC CONTROL STATION
N2 SUPPLY
STS DOCKING MODULE
UNPRESS. DOCKING ADAPTER
v
Name:|STS DOCKING MODULE
@® Manager's Reserve CGRO0:{642.69 inches
Mass(ibs)
Equipment:|0.00 Mission:MB-1
Fluids & Gases:|0.00
FsE:{250.00 Comment:
e UNPRESSURIZED DOCKING
0AF:|1100.00
Total: 1362.49

Figure 10.1 - Equipment Dialog

To create an equipment element, mouse on the New button. An equipment element named
~antitled” will be created and added to the equipment element list. To edit an equipment element,
select it from the element list. The equipment element data fields will be populated with element's
data. Select the desired values to change, tabing between fields. To delete an element, select it and
mouse on the Delete button.

Copyright © 1991, ISX Corporation v1.0b

ASP User's Reference Guide 15

11.0 Cargo Assembly Dialog

The Cargo Assembly Dialog allows the user to add or remove assembly elements from the current
mission, create or delete cargo elements, or add or remove mission assembly elements from
existing cargo elements, see Figure 11.1. The dialog consists of the available assembly element
list, the mission assembly element list, the mission cargo element list, the cargo element
assembly element list, the cargo element name field, the add and remove mission assembly
element icons, the add and remove cargo element assembly element icons, the new and delete
cargo element buttons, and the Done button.

Mission Cargo Element Contents

Avallable Assembly Elements Misslon Assembly Elements Cargo Elements Cargo Element Contents
O {3} |1 SOLAR ARRAYS/BETR GIMBALS
002 S INTEGRATED EQUIPMENT RSSEM
003 157 SOLAR ARRAYS/BETA 61MBAL
DD DD |oo4
003
« «|™
GG Up Mass: 19666.00 Ibs
" ‘ Name:[STBD INBD IEA "] Down Mass: 1100.00 ibs

Figure 11.1 - Cargo Assembly Dialog

To create a cargo element mouse on the add cargo element button, the square "+" button under the
cargo element list. A cargo element named "untitled” will be created and an automatically
generated id number displayed on the cargo element list. To edit the element's name, select the
element, its name will filled into the name field. To delete an element, select it and press the "-"
key. Note that a cargo element must be empty before it can be deleted.

To add an assembly element to the mission, select the element from the available assembly
element list. Mouse on the add assembly element icon, the right pointing double arrowhead
between the available assembly element list and the mission assembly elements list. To remove
an element from the mission, select the element from the mission assembly element list, Mouse on
the remove assembly element icon, the left pointing double arrowhead between the available
assembly element list and the mission assembly element list.

To add an assembly element to an existing cargo element, select the assembly element from the
mission assembly element list and the cargo element from the cargo element list. Mouse on the
add cargo element assembly element icon, the right pointing double arrowhead between the
mission assembly element list and the mission cargo element list. To remove an assembly
element from a cargo element, select the assembly element from the cargo element assembly
element list, Mouse on the remove cargo element assembly element icon, the left pointing double
arrowhead between the mission assembly elements list and the cargo element assembly element
kist. Note that to modify a cargo element, by adding or deleting assembly elements, it not be loaded
into the cargo bay. To remove a loaded cargo element from the cargo bay, use the Cargo Bay
Dialog, see Section 12.0

To exit the dialog, mouse on the Done button.

Copyright © 1991, ISX Corporation v1.0b

ASP User’s Reference Guide

12.0 Cargo Bay Dialog

The Cargo Bay Dialog allows the user to edit various attributes of existing cargo elements, load
and unload the orbiter cargo bay, and alter several orbiter cargo bay constraints, see Figure 12.1.
The dialog consists of three main regions. The upper region displays all existing cargo elements
and the fields for editing their attributes. The middle region displays the orbiter cargo bay
constraint variables. The lower region displays the trunnion, cargo element loading, and orbiter

payload data summaries.

16

Cargo Elements Geometry Data:

AU KN Name:[STBD INBD IEA] up c6:[-58.46 | Down co:[0.00 | Type: [TFA]
003 CETR Fr:[8192 | Fsp:[0.00 Fss:[0.00 FiP:[0.00 Fs:[0.00

004 STBO OTBD TRUSS 'n R ryvemmn) e I

005 STBD OTDB UTLS aF:[-170.00] nsp:[0.00 ass:[0.00 ate:[-12079 | ars:[-120.79

006 PASSIVE DAMPERS
stack: i l Stock Localion:

<l

Length: 251.92 inches

Fwd Clear: Fiwd Toler: Aft Clear: Aft Toler:

Deployment Order: [C] OFlip O SPDS
Length with Scuff: 251.92

inches

4 1

Cargo Bay Ordering

Mission Data:

ATt Haif I.imlt:

® Enforce Truanion Notes

Order from
Rear of Bay

Art Full I.Imll:l 1287.00 I

Forward limlt:l720.oo I
Clearance Mode: | Face to Face |

Trunnion Data: Neme

Number Ho

Pin Delta Notes

002 AWP
003 CETR

273
21
273

Keel Fitting
Forward Port
Forward Stbd

1076.86 0.00 1 O
1076.86 0.00 S
1076.86 0.00 S [

1076.86
1076.86
1076.86

Ho Data:
C6 Ho:

Fwd:

1135.33 art:

<l

40.1

Clear
31.26

Face
994.93
1246.86

Scuff
0.00
3 0.00

Orbiter Payload C6 Data:
C6 Mass: 36093.99
C6 Location:

1027.70

fwd C6: 1012.42

Fwd Margin: 15.27

Aft €6: 1197.38 ATt Meargin: 169.67

Figure 12.1 - Cargo Bay Dialog

To edit an existing cargo element's attributes, select the element from the cargo elements list. The
geometry data fields will be filled with the element's data. Edit the data by
and selecting choices from the popup menus and the radio buttons. Note that only those cargo

elements that are not loaded into the cargo bay may be edited.

The mission data, orbiter cargo bay constraints, may be edited at any time. However, if any cargo
elements are loaded into the cargo bay the user will be warned that changes to these valued may
invalidate the current cargo bay configuration. It is recommended that the bay be unloaded prior to

changing these values.

Copyright © 1991, ISX Corporation

v1.0b

tabing between fields

ASP User's Reference Guide 17

To load the cargo bay, select a cargo element from the cargo elements list. Mouse on the load cargo
element icon, the downward pointing arrow. The element will be loaded into the bay and be
displayed in the cargo bay list. To unload an element, select it from the cargo bay list. Mouse on
the unload cargo element icon. The element will be unloaded and removed from the cargo bay list.
Note that if the element to be unloaded is has loaded elements forward of it in the cargo bay, they

will also be unloaded.

To exit the dialog, mouse on the Done button.

Copyright © 1991, ISX Corporation v1.0b

ASP User's Reference Guide 18

18.0 Preferences Dialog

The Preferences Dialog allows the user to edit the global system values, see Figure 13.1. The
dialog consists of various data fields, which may be edited by selecting the values and tabing
between fields. To save the new values, mouse on the Save button. To cancel any changes, mouse
on the Cancel button. (Bug: Changing the Start or End year will not cause the top level PAA window
to change its start or end years until the system has been saved and reloaded).

PREFERENCES
Calendar Paramters: Cargo Element Default Parameters:
start Year: Forward Clearance:|24.0
End Year:| 1999 Forward Tolerance:|0.04999

Aft Clearance:|24.0
Aft Tolerance:}0.19999

Manager's Reserve Default Parameters:

Manager's Reserve Multiplier: 0.049¢
@® Apply Manager's Reserve

Mission Default Parameters: Kohr's Curve Parameters:
Aft Half Limit:| 1302.0 Forward Coeff 1:/1076.69999
Aft Full Limit:| 1287.0 Forward Coeff 2:|2320000.0
Forward Limit:|720.0 Aft Coeff 1:{1109.0
@ Enforce Trunnion Notes Aft Coeff 2:|3190000.0

Clearance Mode: [Face to Face |

Sape

Figure 13.1 - Preferences Dialog

Copyright © 1991, ISX Corporation v1.0b

ASP User’s Reference Guide A-1

Appendix A - Cargo Bay Editor

Cargo Bay Editor, see Figure A-1, is intended to be implemented in Phase II of the program and to
replace the Cargo Bay Dialog shown in Section 12.0. This approach utilizes a user-friendly,
graphically oriented, interface for defining a mission's cargo element geometry and placement

in the cargo bay.

Q)

Cargo Elements

fa
STBD INBRD IEA
SOLAR ARRAYS
BETR JOINTS
TRUSS O CETA RAILS

UTILITY TRAYS
B

MT/APS/ALUP

PASSIVE DAMPERS(S)

UNPRESS. DOCK. RDAPT]!

Keel Number:

Keel Location:

Bistance to forward bulkhead:
Distance to aft bulkhead:
Distance to aft element:
Distance to forward element:

(keel..) (save) (cancer]

Figure A-1 - Cargo Bay Editor

The upper left corner of the editor displays the envelopes for this mission's cargo elements. The
elements are labeled according to the cargo element ids specified in the Mission Dialog, see
Section 9.0. An element which is grayed-out signifies that its geometry has not been defined by the
user. Selecting this element will cause a dialog to appear which will invite the user to specify the
element's geometric attributes, including its envelope, keel pin and trunnion point locations, cg
Jocation, and whether it is a full or half height element. Saving this dialog will cause the user to be
returned to the Cargo Bay Editor and the selected element to become white. A white element may be
dragged into the cargo bay for placement. The user selects the element, and while holding down
the mouse button, drags it toward the cargo bay. When the element reached the bottom of the bay, it
will "click” into place at the nearest keel pin/trunnion location which matches the element's
configuration. As the user slides the element along the bottom of the bay, the element will continue
to "click” into the next acceptable location. As the element approaches another element, or the
forward or aft cargo bay bulkhead, an alert is displayed when the element violates the buffer
distance constraint (defined in the Cargo Bay Editor Preferences dialog, not shown). The user
then has the option of overriding the violated constraint or returning the element to the last

Copyright © 1991, ISX Corporation v1.0b

ASP User’'s Reference Guide A-2

acceptable location. The user may overlap elements, to provide for the case where an element has a
convex face which complements a concave face of a adjacent element. The user may also
~reverse” the orientation of an element, such that the element's forward face becomes the aft face
and visa versa. Directly below the cargo bay are a series of text fields which provide dynamic
information about the state of the currently selected element and the center of gravity margin as
determined by the Kohr's memo constraint curve (the parameters of this curve may be edited in the
aforementioned preferences dialog). A description of each cargo element is shown in the lower left
corner of the editor while the "Save", "Cancel", and "Keel..." buttons are located in the lower
right. Pressing the "Keel..." button displays a dialog which enables the user to alter the
configuration of the keel pin/trunnion locations.

Copyright © 1991, ISX Corporation vl.0b

ASP User's Reference Guide B-1

Appendix B - Trunnion Data
The Trunnion data file must be in the following format:

155, 612.73, 13, -1, -1, -1, -1,
156, 616.67, 0,-1, 3, 7, 9
157, 620.60, 0,-1, 3, 7, 9,
158, 624.53,-1,-1, 3, 7, 9,
159, 628.47,-1,-1, 3, 7, 9,
160, 632.40,-1,-1, 3, 7, 9,

163, 644.20,-1,-1, 3, 7,-1,
164, 648.13,-1,-1, 3, 7,-1,
165, 652.07, -1, -1, 3, 7, 10,
L J
L]
313, 1234.20,-1,-1, 9,-1,-1,
314, 1238.13,-1,-1, 9,-1,-1,
315, 1242.07,-1,-1, 9,-1,-1,
316, 1246.00,-1,-1, 3, 9,-1,
323, 1273.53,-1,-1, 3,-1,-1

Where the fields are from left to right the trunnion number, the Xo location, the three keel fitting
note fields, and the two longeron fitting note fields.

Copyright © 1991, ISX Corporation v1.0b

ASP User’'s Reference Guide

Appendix C - Known Bugs

(6}

(2)

3)

4)

%)

(6)

Copyright © 1991, ISX Corporation

When the top level PAA window is scaled beyond 72 weeks the upper date
scale is not displayed properly.

Changing the Start or End year will not cause the top level PAA window to
change its start or end years until the system has been saved and reloaded.

Changing the name a PAA data file with the Finder will not result in its
name changing within the PAA application.

Many lists within the PAA application do not respond to double-clicking on
a selection.

When a mission data attribute is changed in the Cargo Bay Dialog and
cargo elements are loaded into the cargo bay, it may take several attempts
to exit the dialog with the Done button.

When attempting to change the number of an assembly element in the
Assembly Element Dialog and the new number already exists in the
system, an error dialog will be diaplayed when the user attempts to exit the
dialog.

v1.0b

ASP User’s Reference Guide

Index

Assembly Element Dialog 8
Assembly Elements... 7
Assembly Elements... 8A 6
Cargo Assembly Dialog 15
Cargo Bay Dialog 16

Cargo Bay Editor 1

Cargo Bay... 6

cargo elements 15

Cargo Elements... 7
Default 11

Disk Contents 1

distribution files 1
Elements Menu 6
Equipment Dialog 14
Equipment... 7

Exceptions Dialog 9
Exceptions... 7
Exceptions... ¥E 6

Figure 10.1 - Equipment Dialog 14

Figure 11.1 - Cargo Assembly Dialog 15

Figure 12.1 - Cargo Bay Dialog 16
Figure 13.1 - Preferences Dialog 18
Figure 3.1 - Distribution Files 1
Figure 3.2 - Installed PAA Files 2

Figure 4.1 - Top Level PAA Window 3
Figure 5.1 - Assembly Element Dialog 8

Figure 6.1 - Exceptions Dialog 9
Figure 7.1 - Milestone Dialog 10

Figure 8.1 - Open Mission Dialog 11

Figure 9.1 - Mission Dialog 12
Figure A-1 - Cargo Bay Editor 1
File Menu 5

Finder 1

Hardware Requirements 1
Installation 1

Known Bugs 1

load cargo element 16
Mass and CG... 7
Milestone Dialog 10
Milestones... 6, 7

Mission Dialog 9, 12
Missions... 7

Missions... M 6
Multifinder 1

New... XN &

Open Mission Dialog 11
Open... 80 5

PAA Window 3
Preferences Dialog 18
Preferences... ¥P 5
Quit... 8Q 5

Copyright © 1991, ISX Corporation

Read... 5

Reports Menu 7

Save S5

Save as... 5

Scaling 4

Scrolling 4

Software Requirements 1
System 1

Trunnion Data 1
Trunnions... 6

unload cargo element 16

v1.0b

